Multicriteria extensions of the best choice problem: sequential selection without linear order

Author(s):  
Alexander V. Gnedin
2015 ◽  
Vol 29 (1) ◽  
pp. 500-513 ◽  
Author(s):  
Andrzej Grzesik ◽  
Michał Morayne ◽  
Małgorzata Sulkowska

2016 ◽  
Vol 48 (3) ◽  
pp. 726-743 ◽  
Author(s):  
Mitsushi Tamaki

Abstract The best-choice problem and the duration problem, known as versions of the secretary problem, are concerned with choosing an object from those that appear sequentially. Let (B,p) denote the best-choice problem and (D,p) the duration problem when the total number N of objects is a bounded random variable with prior p=(p1, p2,...,pn) for a known upper bound n. Gnedin (2005) discovered the correspondence relation between these two quite different optimal stopping problems. That is, for any given prior p, there exists another prior q such that (D,p) is equivalent to (B,q). In this paper, motivated by his discovery, we attempt to find the alternate correspondence {p(m),m≥0}, i.e. an infinite sequence of priors such that (D,p(m-1)) is equivalent to (B,p(m)) for all m≥1, starting with p(0)=(0,...,0,1). To be more precise, the duration problem is distinguished into (D1,p) or (D2,p), referred to as model 1 or model 2, depending on whether the planning horizon is N or n. The aforementioned problem is model 1. For model 2 as well, we can find the similar alternate correspondence {p[m],m≥ 0}. We treat both the no-information model and the full-information model and examine the limiting behaviors of their optimal rules and optimal values related to the alternate correspondences as n→∞. A generalization of the no-information model is given. It is worth mentioning that the alternate correspondences for model 1 and model 2 are respectively related to the urn sampling models without replacement and with replacement.


2004 ◽  
Vol 36 (2) ◽  
pp. 398-416 ◽  
Author(s):  
Stephen M. Samuels

The full-information best-choice problem, as posed by Gilbert and Mosteller in 1966, asks us to find a stopping rule which maximizes the probability of selecting the largest of a sequence of n i.i.d. standard uniform random variables. Porosiński, in 1987, replaced a fixed n by a random N, uniform on {1,2,…,n} and independent of the observations. A partial-information problem, imbedded in a 1980 paper of Petruccelli, keeps n fixed but allows us to observe only the sequence of ranges (max - min), as well as whether or not the current observation is largest so far. Recently, Porosiński compared the solutions to his and Petruccelli's problems and found that the two problems have identical optimal rules as well as risks that are asymptotically equal. His discovery prompts the question: why? This paper gives a good explanation of the equivalence of the optimal rules. But even under the lens of a planar Poisson process model, it leaves the equivalence of the asymptotic risks as somewhat of a mystery. Meanwhile, two other problems have been shown to have the same limiting risks: the full-information problem with the (suboptimal) Porosiński-Petruccelli stopping rule, and the full-information ‘duration of holding the best’ problem of Ferguson, Hardwick and Tamaki, which turns out to be nothing but the Porosiński problem in disguise.


1973 ◽  
Vol 17 (4) ◽  
pp. 657-668 ◽  
Author(s):  
E. L. Presman ◽  
I. M. Sonin

1983 ◽  
Vol 20 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Joseph D. Petruccelli

We consider the problem of maximizing the probability of choosing the largest from a sequence of N observations when N is a bounded random variable. The present paper gives a necessary and sufficient condition, based on the distribution of N, for the optimal stopping rule to have a particularly simple form: what Rasmussen and Robbins (1975) call an s(r) rule. A second result indicates that optimal stopping rules for this problem can, with one restriction, take virtually any form.


Sign in / Sign up

Export Citation Format

Share Document