Basic Bessel functions and 𝑞-difference equations

Author(s):  
Roberto Floreanini ◽  
Luc Vinet
1963 ◽  
Vol 59 (1) ◽  
pp. 117-124 ◽  
Author(s):  
A. Wragg

AbstractThe time-dependent solutions of an infinite set of differential-difference equations arising from queueing theory and models of ‘living’ polymer are expressed in terms of modified Bessel functions. Explicit solutions are available for constant values of a parameter describing the arrival rate or monomer concentration; for time-dependent parameter a formal solution is obtained in terms of a function which satisfies a Volterra type integral equation of the second kind. These results are used as the basis of a numerical method of solving the infinite set of differential equations when the time-dependent parameter itself satisfies a differential equation.


2003 ◽  
Vol 2003 (57) ◽  
pp. 3633-3642 ◽  
Author(s):  
G. Dattoli ◽  
H. M. Srivastava ◽  
D. Sacchetti

We introduce new families of Hermite polynomials and of Bessel functions from a point of view involving the use of nonexponential generating functions. We study their relevant recurrence relations and show that they satisfy differential-difference equations which are isospectral to those of the ordinary case. We also indicate the usefulness of some of these new families.


Author(s):  
Sergei Chuiko ◽  
Yaroslav Kalinichenko ◽  
Nikita Popov

The original conditions of solvability and the scheme of finding solutions of a linear Noetherian difference-algebraic boundary-value problem are proposed in the article, while the technique of pseudoinversion of matrices by Moore-Penrose is substantially used. The problem posed in the article continues to study the conditions for solvability of linear Noetherian boundary value problems given in the monographs of A.M. Samoilenko, A.V. Azbelev, V.P. Maximov, L.F. Rakhmatullina and A.A. Boichuk. The study of differential-algebraic boundary-value problems is closely related to the investigation of boundary-value problems for difference equations, initiated in the works of A.A. Markov, S.N. Bernstein, Y.S. Bezikovych, O.O. Gelfond, S.L. Sobolev, V.S. Ryabenkyi, V.B. Demidovych, A. Halanai, G.I. Marchuk, A.A. Samarskyi, Yu.A. Mytropolskyi, D.I. Martyniuk, G.M. Vainiko, A.M. Samoilenko and A.A. Boichuk. On the other hand, the study of boundary-value problems for difference equations is related to the study of differential-algebraic boundary-value problems initiated in the papers of K. Weierstrass, N.N. Lusin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, N.A. Perestiyk, V.P. Yakovets, A.A. Boichuk, A. Ilchmann and T. Reis. The study of differential-algebraic boundary value problems is also associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, control theory, motion stability theory. The general case of a linear bounded operator corresponding to the homogeneous part of a linear Noetherian difference-algebraic boundary value problem has no inverse is investigated. The generalized Green operator of a linear difference-algebraic boundary value problem is constructed in the article. The relevance of the study of solvability conditions, as well as finding solutions of linear Noetherian difference-algebraic boundary-value problems, is associated with the widespread use of difference-algebraic boundary-value problems obtained by linearizing nonlinear Noetherian boundary-value problems for systems of ordinary differential and difference equations. Solvability conditions are proposed, as well as the scheme of finding solutions of linear Noetherian difference-algebraic boundary value problems are illustrated in detail in the examples.


Sign in / Sign up

Export Citation Format

Share Document