scholarly journals Comparison morphisms between two projective resolutions of monomial algebras

Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.

Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


2006 ◽  
Vol 05 (03) ◽  
pp. 245-270 ◽  
Author(s):  
CLAUDIA STRAMETZ

We study the Lie algebra structure of the first Hochschild cohomology group of a finite dimensional monomial algebra Λ, in terms of the combinatorics of its quiver, in any characteristic. This allows us also to examine the identity component of the algebraic group of outer automorphisms of Λ in characteristic zero. Criteria for the (semi-)simplicity, the solvability, the reductivity, the commutativity and the nilpotency are given.


2015 ◽  
Vol 15 (02) ◽  
pp. 1650034 ◽  
Author(s):  
Yan-Hong Bao ◽  
Yu Ye

We introduce quasi-Poisson cohomology groups for a Poisson algebra, which can be computed by its quasi-Poisson complex. Moreover, there exists a Grothendieck spectral sequence relating quasi-Poisson cohomology to Hochschild cohomology and Lie algebra cohomology.


2016 ◽  
Vol 27 (06) ◽  
pp. 1650057 ◽  
Author(s):  
Haibo Chen ◽  
Jianzhi Han ◽  
Yucai Su ◽  
Ying Xu

In this paper, we introduce two kinds of Lie conformal algebras, associated with the loop Schrödinger–Virasoro Lie algebra and the extended loop Schrödinger–Virasoro Lie algebra, respectively. The conformal derivations, the second cohomology groups of these two conformal algebras are completely determined. And nontrivial free conformal modules of rank one and [Formula: see text]-graded free intermediate series modules over these two conformal algebras are also classified in the present paper.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


Author(s):  
Viviana Gubitosi

In this paper, we compute the dimension of the Hochschild cohomology groups of any [Formula: see text]-cluster tilted algebra of type [Formula: see text]. Moreover, we give conditions on the bounded quiver of an [Formula: see text]-cluster tilted algebra [Formula: see text] of type [Formula: see text] such that the Gerstenhaber algebra [Formula: see text] has nontrivial multiplicative structures. We also show that the derived class of gentle [Formula: see text]-cluster tilted algebras is not always completely determined by the dimension of the Hochschild cohomology.


2004 ◽  
Vol 03 (02) ◽  
pp. 143-159 ◽  
Author(s):  
CLAUDE CIBILS ◽  
MARÍA JULIA REDONDO ◽  
MANUEL SAORÍN

Given a finite-dimensional monomial algebra A, we consider the trivial extension TA and provide formulae, depending on the characteristic of the field, for the dimensions of the summands HH1(A) and Alt (DA) of the first Hochschild cohomology group HH1(TA). From these a formula for the dimension of HH1(TA) can be derived.


2009 ◽  
Vol 52 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Jan M. Cameron

AbstractIn this paper we prove that, for a type-II1 factor N with a Cartan maximal abelian subalgebra, the Hochschild cohomology groups Hn(N,N)=0 for all n≥1. This generalizes the result of Sinclair and Smith, who proved this for all N having a separable predual.


Sign in / Sign up

Export Citation Format

Share Document