Existence theorems for minimal surfaces of nonzero genus spanning a contour

1988 ◽  
Vol 71 (382) ◽  
pp. 0-0 ◽  
Author(s):  
Friedrich Tomi ◽  
Anthony J. Tromba
Analysis ◽  
2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Patrick Henkemeyer

AbstractWe discuss certain quantitative geometric properties of energy stationary currents describing minimal surfaces under gravitational forces. Enclosure theorems give statements about the confinement of the support of currents to certain enclosing sets on the basis that one knows something about the position of their boundaries. These results are closely related to non-existence theorems for currents with connected support. Finally, we define a weak formulation in the theory of varifolds for the curvature flow associated to this energy functional. We extend the enclosure results to the flow and discuss several comparison principles.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcello Carioni ◽  
Alessandra Pluda

Abstract Calibrations are a possible tool to validate the minimality of a certain candidate. They have been introduced in the context of minimal surfaces and adapted to the case of the Steiner problem in several variants. Our goal is to compare the different notions of calibrations for the Steiner problem and for planar minimal partitions that are already present in the literature. The paper is then complemented with remarks on the convexification of the problem, on nonexistence of calibrations and on calibrations in families.


Sign in / Sign up

Export Citation Format

Share Document