scholarly journals The reverse mathematics of the Tietze extension theorem

2016 ◽  
Vol 144 (12) ◽  
pp. 5359-5370
Author(s):  
Paul Shafer
2000 ◽  
Vol 65 (3) ◽  
pp. 1451-1480 ◽  
Author(s):  
Mariagnese Giusto ◽  
Stephen G. Simpson

AbstractLet X be a compact metric space. A closed set K ⊆ X is located if the distance function d(x, K) exists as a continuous real-valued function on X; weakly located if the predicate d(x, K) > r is allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA0, WKL0 and ACA0. We also give some applications of these concepts by discussing some versions of the Tietze extension theorem. In particular we prove an RCA0 version of this result for weakly located closed sets.


2020 ◽  
Vol 8 ◽  
Author(s):  
Takayuki Kihara

Abstract In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system ${\sf RCA}_0$ . In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of $\mathbb {R}^4$ into $\mathbb {R}^3$ .


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2009 ◽  
Vol 17 (2) ◽  
Author(s):  
Noboru Endou ◽  
Hiroyuki Okazaki ◽  
Yasunari Shidama
Keyword(s):  

2011 ◽  
Vol 18 (1) ◽  
pp. 21-29
Author(s):  
Ricardo Abreu Blaya ◽  
Juan Bory Reyes ◽  
Tania Moreno García

Abstract The aim of this paper is to prove the characterization on a bounded domain of with fractal boundary and a Hölder continuous function on the boundary guaranteeing the biregular extendability of the later function throughout the domain.


2007 ◽  
Vol 72 (1) ◽  
pp. 171-206 ◽  
Author(s):  
Denis R. Hirschfeldt ◽  
Richard A. Shore

AbstractWe investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs () splits into a stable version () and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for and ). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL0, DNR, and BΣ2. We show, for instance, that WKL0 is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is -conservative over the base system RCA0. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch. Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply (and so does not imply ). This answers a question of Cholak, Jockusch, and Slaman.Our proofs suggest that the essential distinction between ADS and CAC on the one hand and on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.


Author(s):  
XIANG LI ◽  
BAODING LIU

Possibility measures and credibility measures are widely used in fuzzy set theory. Compared with possibility measures, the advantage of credibility measures is the self-duality property. This paper gives a relation between possibility measures and credibility measures, and proves a sufficient and necessary condition for credibility measures. Finally, the credibility extension theorem is shown.


Sign in / Sign up

Export Citation Format

Share Document