On the convergence rate for the Glimm scheme

Author(s):  
Fabio Ancona ◽  
Andrea Marson
2014 ◽  
Vol 11 (02) ◽  
pp. 355-435 ◽  
Author(s):  
Stefano Bianchini ◽  
Stefano Modena

We prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme. The proof is based on the introduction of a quadratic functional 𝔔(t), decreasing at every interaction, and such that its total variation in time is bounded. Differently from other interaction potentials present in the literature, the form of this functional is the natural extension of the original Glimm functional, and coincides with it in the genuinely nonlinear case.


2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


Author(s):  
Abdul-Rashid Ramazanov ◽  
V.G. Magomedova

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.


Sign in / Sign up

Export Citation Format

Share Document