Algebraic curves mod 𝔭 and arithmetic groups

Author(s):  
Yasutaka Ihara



2020 ◽  
Vol 2020 (1) ◽  
pp. 9-16
Author(s):  
Evgeniy Konopatskiy

The paper presents a geometric theory of multidimensional interpolation based on invariants of affine geometry. The analytical description of geometric interpolants is performed within the framework of the mathematical apparatus BN-calculation using algebraic curves that pass through preset points. A geometric interpretation of the interaction of parameters, factors, and the response function is presented, which makes it possible to generalize the geometric theory of multidimensional interpolation in the direction of increasing the dimension of space. The conceptual principles of forming the tree of the geometric interpolant model as a geometric basis for modeling multi-factor processes and phenomena are described.



1992 ◽  
Vol 75 (1) ◽  
pp. 97-102 ◽  
Author(s):  
B. Sury


Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

Abstract We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.





Topology ◽  
1993 ◽  
Vol 32 (4) ◽  
pp. 845-856 ◽  
Author(s):  
Eugenii Shustin
Keyword(s):  




Nature ◽  
1951 ◽  
Vol 167 (4259) ◽  
pp. 962-962
Author(s):  
H. T. H. PIAGGIO
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document