Isolated critical points of complex functions

Author(s):  
John Milnor
Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-373-Pr5-376 ◽  
Author(s):  
A. A. Likalter ◽  
H. Schneidenbach
Keyword(s):  

1988 ◽  
Vol 60 (01) ◽  
pp. 068-074 ◽  
Author(s):  
Piet W Modderman ◽  
Han G Huisman ◽  
Jan A van Mourik ◽  
Albert E G Kr von dem Borne

SummaryThe platelet glycoprotein (GP) IIb/IIIa complex functions as the receptor for fibrinogen on activated platelets. The effects of two anti-GPIIb/IIIa monoclonal antibodies on platelet function were studied. These antibodies, 6C9 and C17, recognized different epitopes, which were exclusively present on the undissociated GPIIb/IIIa complex. Whereas C17 inhibited the binding of fibrinogen to platelets and platelet aggregation induced by adenosine diphosphate (ADP) or collagen, 6C9 caused irreversible aggregation of platelets, both in the presence and absence of extracellular fibrinogen. When incubated with unstirred (nonaggregating) platelets, 6C9 induced release of alpha and dense granule-constituents as well as binding of 125I-fibrinogen to platelets. The latter was evidently mediated in part by platelet-derived ADP, since it was inhibited to a large extent by apyrase, the ADP-hydrolyzing enzyme. F(ab’)2 fragments of 6C9 did not induce platelet-release reactions but caused (slow) aggregation of platelets in the presence of extracellular fibrinogen.These results indicate that binding of an antibody to a specific site on the platelet GPIIb/IIIa complex may cause fibrinogen-mediated aggregation. The Fc part of the platelet-bound antibody appears to be involved in the induction of platelet release.


Author(s):  
Elena V. Bespalova

Ancient lake sediments of Bibirevo section in the Yaroslavl and Kostroma Volga region are studied by means of graphical analysis of taxonomical structure of diatom complexes. This method allowed to record critical points (change of areas of stability) in the development of a Neopleistocene lake during the transition from stage to stage, as well as from phase to phase.


1996 ◽  
Vol 166 (6) ◽  
pp. 683-685 ◽  
Author(s):  
K.V. Kovalenko ◽  
S.V. Krivokhizha ◽  
Immanuil L. Fabelinskii ◽  
L.L. Chaikov

2003 ◽  
Vol 773 ◽  
Author(s):  
C. Tamerler ◽  
S. Dinçer ◽  
D. Heidel ◽  
N. Karagûler ◽  
M. Sarikaya

AbstractProteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.


Sign in / Sign up

Export Citation Format

Share Document