scholarly journals Fine asymptotic densities for sets of natural numbers

2010 ◽  
Vol 138 (08) ◽  
pp. 2657-2657 ◽  
Author(s):  
Mauro Di Nasso
Author(s):  
Tyron Goldschmidt

This chapter considers Plantinga’s argument from numbers for the existence of God. Plantinga sees divine psychologism as having advantages over both human psychologism and Platonism. The chapter begins with Plantinga’s description of the argument, including the relation of numbers to any divine attribute. It then argues that human psychologism can be ruled out completely. However, what rules it out might rule out divine psychologism too. It also argues that the main problem with Platonism might also be a problem with divine psychologism. However, it will, at the least, be less of a problem. In any case, there are alternative, possibly viable views about the nature of numbers that have not been touched by Plantinga’s argument. In addition, the chapter touches on the argument from properties, and its relation to the argument from numbers.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
Arsen L. Yakymiv

Abstract Dedicated to the memory of Alexander Ivanovich Pavlov. We consider the set of n-permutations with cycle lengths belonging to some fixed set A of natural numbers (so-called A-permutations). Let random permutation τ n be uniformly distributed on this set. For some class of sets A we find the asymptotics with remainder term for moments of total cycle number of τ n .


2020 ◽  
Vol 70 (3) ◽  
pp. 657-666
Author(s):  
Bingzhe Hou ◽  
Yue Xin ◽  
Aihua Zhang

AbstractLet x = $\begin{array}{} \displaystyle \{x_n\}_{n=1}^{\infty} \end{array}$ be a sequence of positive numbers, and 𝓙x be the collection of all subsets A ⊆ ℕ such that $\begin{array}{} \displaystyle \sum_{k\in A} \end{array}$xk < +∞. The aim of this article is to study how large the summable subsequence could be. We define the upper density of summable subsequences of x as the supremum of the upper asymptotic densities over 𝓙x, SUD in brief, and we denote it by D*(x). Similarly, the lower density of summable subsequences of x is defined as the supremum of the lower asymptotic densities over 𝓙x, SLD in brief, and we denote it by D*(x). We study the properties of SUD and SLD, and also give some examples. One of our main results is that the SUD of a non-increasing sequence of positive numbers tending to zero is either 0 or 1. Furthermore, we obtain that for a non-increasing sequence, D*(x) = 1 if and only if $\begin{array}{} \displaystyle \liminf_{k\to\infty}nx_n=0, \end{array}$ which is an analogue of Cauchy condensation test. In particular, we prove that the SUD of the sequence of the reciprocals of all prime numbers is 1 and its SLD is 0. Moreover, we apply the results in this topic to improve some results for distributionally chaotic linear operators.


Author(s):  
Vakeel A. Khan ◽  
Umme Tuba ◽  
SK. Ashadul Rahama ◽  
Ayaz Ahmad

In 1990, Diamond [16] primarily established the base of fuzzy star–shaped sets, an extension of fuzzy sets and numerous of its properties. In this paper, we aim to generalize the convergence induced by an ideal defined on natural numbers ℕ , introduce new sequence spaces of fuzzy star–shaped numbers in ℝ n and examine various algebraic and topological properties of the new corresponding spaces as well. In support of our results, we provide several examples of these new resulting sequences.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
M. Basher

AbstractA simple graph $$G=(V,E)$$ G = ( V , E ) is said to be k-Zumkeller graph if there is an injective function f from the vertices of G to the natural numbers N such that when each edge $$xy\in E$$ x y ∈ E is assigned the label f(x)f(y), the resulting edge labels are k distinct Zumkeller numbers. In this paper, we show that the super subdivision of path, cycle, comb, ladder, crown, circular ladder, planar grid and prism are k-Zumkeller graphs.


1981 ◽  
Vol 4 (3) ◽  
pp. 675-760
Author(s):  
Grażyna Mirkowska

The aim of propositional algorithmic logic is to investigate the properties of program connectives. Complete axiomatic systems for deterministic as well as for nondeterministic interpretations of program variables are presented. They constitute basic sets of tools useful in the practice of proving the properties of program schemes. Propositional theories of data structures, e.g. the arithmetic of natural numbers and stacks, are constructed. This shows that in many aspects PAL is close to first-order algorithmic logic. Tautologies of PAL become tautologies of algorithmic logic after replacing program variables by programs and propositional variables by formulas. Another corollary to the completeness theorem asserts that it is possible to eliminate nondeterministic program variables and replace them by schemes with deterministic atoms.


Sign in / Sign up

Export Citation Format

Share Document