scholarly journals Rectifiable metric spaces: local structure and regularity of the Hausdorff measure

1994 ◽  
Vol 121 (1) ◽  
pp. 113-113 ◽  
Author(s):  
Bernd Kirchheim
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


2000 ◽  
Vol 11 (08) ◽  
pp. 1057-1078
Author(s):  
JINGBO XIA

Kuroda's version of the Weyl-von Neumann theorem asserts that, given any norm ideal [Formula: see text] not contained in the trace class [Formula: see text], every self-adjoint operator A admits the decomposition A=D+K, where D is a self-adjoint diagonal operator and [Formula: see text]. We extend this theorem to the setting of multiplication operators on compact metric spaces (X, d). We show that if μ is a regular Borel measure on X which has a σ-finite one-dimensional Hausdorff measure, then the family {Mf:f∈ Lip (X)} of multiplication operators on T2(X, μ) can be simultaneously diagonalized modulo any [Formula: see text]. Because the condition [Formula: see text] in general cannot be dropped (Kato-Rosenblum theorem), this establishes a special relation between [Formula: see text] and the one-dimensional Hausdorff measure. The main result of the paper is that such a relation breaks down in Hausdorff dimensions p>1.


2020 ◽  
Vol 70 (3) ◽  
pp. 617-624
Author(s):  
Nijjwal Karak

AbstractWe provide a upper bound for Triebel-Lizorkin capacity in metric settings in terms of Hausdorff measure. On the other hand, we also prove that the sets with zero capacity have generalized Hausdorff h-measure zero for a suitable gauge function h.


Author(s):  
Panu Lahti ◽  
Xiaodan Zhou

Abstract In this paper, we study functions of bounded variation on a complete and connected metric space with finite one-dimensional Hausdorff measure. The definition of BV functions on a compact interval based on pointwise variation is extended to this general setting. We show this definition of BV functions is equivalent to the BV functions introduced by Miranda [18]. Furthermore, we study the necessity of conditions on the underlying space in Federer’s characterization of sets of finite perimeter on metric measure spaces. In particular, our examples show that the doubling and Poincaré inequality conditions are essential in showing that a set has finite perimeter if the codimension one Hausdorff measure of the measure-theoretic boundary is finite.


Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


1982 ◽  
Vol 43 (C9) ◽  
pp. C9-43-C9-46 ◽  
Author(s):  
A. Sadoc ◽  
A. M. Flank ◽  
D. Raoux ◽  
P. Lagarde

1986 ◽  
Vol 47 (C8) ◽  
pp. C8-423-C8-426
Author(s):  
H. OYANAGI ◽  
Y. TAKEDA ◽  
T. MATSUSHITA ◽  
T. ISHIGURO ◽  
A. SASAKI

Sign in / Sign up

Export Citation Format

Share Document