scholarly journals $k$-harmonic maps into a Riemannian manifold with constant sectional curvature

2012 ◽  
Vol 140 (5) ◽  
pp. 1835-1847 ◽  
Author(s):  
Shun Maeta
2014 ◽  
Vol 57 (2) ◽  
pp. 401-412 ◽  
Author(s):  
Domenico Perrone

Abstract.In this paper we characterize K-contact semi-Riemannian manifolds and Sasakian semi- Riemannian manifolds in terms of curvature. Moreover, we show that any conformally flat K-contact semi-Riemannian manifold is Sasakian and of constant sectional curvature κ = ɛ, where ɛ = ± denotes the causal character of the Reeb vector field. Finally, we give some results about the curvature of a K-contact Lorentzian manifold.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Mukut Mani Tripathi ◽  
Erol Kılıç ◽  
Selcen Yüksel Perktaş ◽  
Sadık Keleş

We introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para-Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it cannot admit an (ε)-para Sasakian structure. We show that, for an (ε)-para Sasakian manifold, the conditions of being symmetric, semi-symmetric, or of constant sectional curvature are all identical. It is shown that a symmetric spacelike (resp., timelike) (ε)-para Sasakian manifoldMnis locally isometric to a pseudohyperbolic spaceHνn(1)(resp., pseudosphereSνn(1)). At last, it is proved that for an (ε)-para Sasakian manifold the conditions of being Ricci-semi-symmetric, Ricci-symmetric, and Einstein are all identical.


2015 ◽  
Vol 26 (11) ◽  
pp. 1550091
Author(s):  
M. K. Sedaghat ◽  
B. Bidabad

Here, it is shown that if a forward geodesically complete Finsler manifold admits a circle preserving change of metric then its indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1. Moreover, if the Finsler manifold is absolutely homogeneous and of scalar flag curvature then it is a Riemannian manifold of constant sectional curvature. These results provide a geometric interpretation for existence of solutions to the certain ODE on the Riemannian tangent space.


1995 ◽  
Vol 37 (3) ◽  
pp. 337-341 ◽  
Author(s):  
Theodoros Vlachos

Let be an n+ 1-dimensional, complete simply connected Riemannian manifold of constant sectional curvature c and We consider the function r(·) = d(·, P0) where d stands for the distance function in and we denote by grad r the gradient of The position vector (see [1]) with origin P0 is defined as where ϕ(r)equalsr, if c = 0, c< 0 or c <0 respectively.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Yuan-Jen Chiang

We generalize wave maps to biwave maps. We prove that the composition of a biwave map and a totally geodesic map is a biwave map. We give examples of biwave nonwave maps. We show that if is a biwave map into a Riemannian manifold under certain circumstance, then is a wave map. We verify that if is a stable biwave map into a Riemannian manifold with positive constant sectional curvature satisfying the conservation law, then is a wave map. We finally obtain a theorem involving an unstable biwave map.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2018 ◽  
Vol 40 (5) ◽  
pp. 1194-1216
Author(s):  
CHRIS CONNELL ◽  
THANG NGUYEN ◽  
RALF SPATZIER

A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.


2018 ◽  
Vol 62 (3) ◽  
pp. 509-523
Author(s):  
Libing Huang ◽  
Xiaohuan Mo

AbstractIn this paper, we study a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ in this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.


Sign in / Sign up

Export Citation Format

Share Document