scholarly journals A collocation-Galerkin method for Poisson’s equation on rectangular regions

1979 ◽  
Vol 33 (145) ◽  
pp. 77-84 ◽  
Author(s):  
Julio César Díaz
2016 ◽  
Vol 15 (2) ◽  
pp. 68
Author(s):  
R. B. Burgos ◽  
H. F. C. Peixoto

The use of multiresolution techniques and wavelets has become increasingly popular in the development of numerical schemes for the solution of partial differential equations (PDEs). Therefore, the use of wavelet scaling functions as a basis in computational analysis holds some promise due to their compact support, orthogonality and localization properties. Daubechies and Deslauriers-Dubuc functions have been successfully used as basis functions in several schemes like the Wavelet- Galerkin Method (WGM) and the Wavelet Finite Element Method (WFEM). Another possible advantage of their use is the fact that the calculation of integrals of inner products of wavelet scaling functions and their derivatives can be made by solving a linear system of equations, thus avoiding the problem of using approximations by some numerical method. These inner products were defined as connection coefficients and they are employed in the calculation of stiffness matrices and load vectors. In this work, some mathematical foundations regarding wavelet scaling functions, their derivatives and connection coefficients are reviewed. A scheme based on the Galerkin Method is proposed for the direct solution of Poisson's equation (potential problems) in a meshless formulation using interpolating wavelet scaling functions (Interpolets). The applicability of the proposed method and some convergence issues are illustrated by means of a few examples.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Yaw Kyei ◽  
John Paul Roop ◽  
Guoqing Tang

We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson's equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear systems are solved in a high-performance computing environment. The resulting discretization is a one-parameter family of finite-difference schemes which may be further optimized for accuracy and stability. Computational experiments are implemented which illustrate the theoretically demonstrated truncation errors.


Author(s):  
N. Rouger

Purpose – Scientists and engineers have been solving Poisson’s equation in PN junctions following two approaches: analytical solving or numerical methods. Although several efforts have been accomplished to offer accurate and fast analyses of the electric field distribution as a function of voltage bias and doping profiles, so far none achieved an analytic or semi-analytic solution to describe neither a double diffused PN junction nor a general case for any doping profile. The paper aims to discuss these issues. Design/methodology/approach – In this work, a double Gaussian doping distribution is first considered. However, such a doping profile leads to an implicit problem where Poisson’s equation cannot be solved analytically. A method is introduced and successfully applied, and compared to a finite element analysis. The approach is then generalized, where any doping profile can be considered. 2D and 3D extensions are also presented, when symmetries occur for the doping profile. Findings – These results and the approach here presented offer an efficient and accurate alternative to numerical methods for the modeling and simulation of mathematical equations arising in physics of semiconductor devices. Research limitations/implications – A general 3D extension in the case where no symmetry exists can be considered for further developments. Practical implications – The paper strongly simplify and ease the optimization and design of any PN junction. Originality/value – This paper provides a novel method for electric field distribution analysis.


Sign in / Sign up

Export Citation Format

Share Document