Clebsh–Gordan coefficients for the algebra 𝔤𝔩₃ and hypergeometric functions

2021 ◽  
Vol 33 (1) ◽  
pp. 1-22
Author(s):  
D. Artamonov

The Clebsh–Gordan coefficients for the Lie algebra g l 3 \mathfrak {gl}_3 in the Gelfand–Tsetlin base are calculated. In contrast to previous papers, the result is given as an explicit formula. To obtain the result, a realization of a representation in the space of functions on the group G L 3 GL_3 is used. The keystone fact that allows one to carry the calculation of Clebsh–Gordan coefficients is the theorem that says that functions corresponding to the Gelfand–Tsetlin base vectors can be expressed in terms of generalized hypergeometric functions.

The Clebsch–Gordan coefficients for the coupling of certain degenerate representations of SL ( n , C ) are expressed as generalized hypergeometric functions. These coefficients define the baryon ‘current’ which is coupled to the lowest state of a meson tower in the SL (6, C ) theory of elementary particles. The asymptotic behaviour of the coefficients for high states in the baryon tower is determined. Orthogonality and completeness relations are proved which lead to an explicit formula for decomposing a two-particle state into a direct integral of ‘currents ’ which belong to the principal series of meson representations. The relation between SL ( n , C ) Clebsch–Gordan coefficients and SU ( n ) 9–j symbols is explored.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


1988 ◽  
Vol 11 (1) ◽  
pp. 167-175 ◽  
Author(s):  
R. S. Dahiya ◽  
I. H. Jowhar

The object of this paper is to obtain new operational relations between the original and the image functions that involve generalized hypergeometricG-functions.


Sankhya A ◽  
2021 ◽  
Author(s):  
Gunnar Taraldsen

AbstractInference for correlation is central in statistics. From a Bayesian viewpoint, the final most complete outcome of inference for the correlation is the posterior distribution. An explicit formula for the posterior density for the correlation for the binormal is derived. This posterior is an optimal confidence distribution and corresponds to a standard objective prior. It coincides with the fiducial introduced by R.A. Fisher in 1930 in his first paper on fiducial inference. C.R. Rao derived an explicit elegant formula for this fiducial density, but the new formula using hypergeometric functions is better suited for numerical calculations. Several examples on real data are presented for illustration. A brief review of the connections between confidence distributions and Bayesian and fiducial inference is given in an Appendix.


2019 ◽  
Vol 18 (12) ◽  
pp. 1950227 ◽  
Author(s):  
Mana Igarashi ◽  
Kailash C. Misra ◽  
Suchada Pongprasert

Let [Formula: see text] be an affine Lie algebra with index set [Formula: see text] and [Formula: see text] be its Langlands dual. It is conjectured that for each Dynkin node [Formula: see text] the affine Lie algebra [Formula: see text] has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of certain coherent family of perfect crystals for [Formula: see text]. In this paper, we construct a positive geometric crystal [Formula: see text] in the level zero fundamental spin [Formula: see text]-module [Formula: see text]. Then we define explicit [Formula: see text]-action on the level [Formula: see text] known [Formula: see text]-perfect crystal [Formula: see text] and show that [Formula: see text] is a coherent family of perfect crystals with limit [Formula: see text]. Finally, we show that the ultra-discretization of [Formula: see text] is isomorphic to [Formula: see text] as crystals which proves the conjecture in this case.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


Sign in / Sign up

Export Citation Format

Share Document