Small parameters in the theory of isometric imbeddings of two-dimensional Riemannian manifolds in Euclidean spaces

Author(s):  
È. G. Poznyak ◽  
E. V. Shikin
2020 ◽  
pp. 2150006
Author(s):  
Denis Bonheure ◽  
Jean Dolbeault ◽  
Maria J. Esteban ◽  
Ari Laptev ◽  
Michael Loss

This paper is devoted to a collection of results on nonlinear interpolation inequalities associated with Schrödinger operators involving Aharonov–Bohm magnetic potentials, and to some consequences. As symmetry plays an important role for establishing optimality results, we shall consider various cases corresponding to a circle, a two-dimensional sphere or a two-dimensional torus, and also the Euclidean spaces of dimensions 2 and 3. Most of the results are new and we put the emphasis on the methods, as very little is known on symmetry, rigidity and optimality in the presence of a magnetic field. The most spectacular applications are new magnetic Hardy inequalities in dimensions [Formula: see text] and [Formula: see text].


Chem ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 829-831
Author(s):  
Shanshan Wang ◽  
Jin Zhang

The two-dimensional problem of symmetric finite amplitude gravity waves in an incompressible fluid of infinite depth is treated by a method which first involves satisfying a non-linear boundary condition exactly. The higher approximations are obtained by the method of small parameters. The breaking-wave conditions are discussed and expressions are given for the free-surface equation, the kinetic and the potential energies of the fluid.


Sign in / Sign up

Export Citation Format

Share Document