scholarly journals Two Distinctly Localized P-Type ATPases Collaborate to Maintain Organelle Homeostasis Required for Glycoprotein Processing and Quality Control

2002 ◽  
Vol 13 (11) ◽  
pp. 3955-3966 ◽  
Author(s):  
Shilpa Vashist ◽  
Christian G. Frank ◽  
Claude A. Jakob ◽  
Davis T.W. Ng

Membrane transporter proteins are essential for the maintenance of cellular ion homeostasis. In the secretory pathway, the P-type ATPase family of transporters is found in every compartment and the plasma membrane. Here, we report the identification of COD1/SPF1(control of HMG-CoA reductase degradation/SPF1) through genetic strategies intended to uncover genes involved in protein maturation and endoplasmic reticulum (ER)-associated degradation (ERAD), a quality control pathway that rids misfolded proteins. Cod1p is a putative ER P-type ATPase whose expression is regulated by the unfolded protein response, a stress-inducible pathway used to monitor and maintain ER homeostasis. COD1 mutants activate the unfolded protein response and are defective in a variety of functions apart from ERAD, which further support a homeostatic role.COD1 mutants display phenotypes similar to strains lacking Pmr1p, a Ca2+/Mn2+pump that resides in the medial-Golgi. Because of its localization, the previously reported role of PMR1 in ERAD was somewhat enigmatic. A clue to their respective roles came from observations that the two genes are not generally required for ERAD. We show that the specificity is rooted in a requirement for both genes in protein-linked oligosaccharide trimming, a requisite ER modification in the degradation of some misfolded glycoproteins. Furthermore, Cod1p, like Pmr1p, is also needed for the outer chain modification of carbohydrates in the Golgi apparatus despite its ER localization. In strains deleted of both genes, these activities are nearly abolished. The presence of either protein alone, however, can support partial function for both compartments. Taken together, our results reveal an interdependent relationship between two P-type ATPases to maintain homeostasis of the organelles where they reside.

2002 ◽  
Vol 157 (6) ◽  
pp. 1017-1028 ◽  
Author(s):  
Stephen R. Cronin ◽  
Rajini Rao ◽  
Randolph Y. Hampton

The internal environment of the ER is regulated to accommodate essential cellular processes, yet our understanding of this regulation remains incomplete. Cod1p/Spf1p belongs to the widely conserved, uncharacterized type V branch of P-type ATPases, a large family of ion pumps. Our previous work suggested Cod1p may function in the ER. Consistent with this hypothesis, we localized Cod1p to the ER membrane. The cod1Δ mutant disrupted cellular calcium homeostasis, causing increased transcription of calcium-regulated genes and a synergistic increase in cellular calcium when paired with disruption of the Golgi apparatus–localized Ca2+ pump Pmr1p. Deletion of COD1 also impaired ER function, causing constitutive activation of the unfolded protein response, hypersensitivity to the glycosylation inhibitor tunicamycin, and synthetic lethality with deletion of the unfolded protein response regulator HAC1. Expression of the Drosophila melanogaster homologue of Cod1p complemented the cod1Δ mutant. Finally, we demonstrated the ATPase activity of the purified protein. This study provides the first biochemical characterization of a type V P-type ATPase, implicates Cod1p in ER function and ion homeostasis, and indicates that these functions are conserved among Cod1p's metazoan homologues.


1997 ◽  
Vol 8 (9) ◽  
pp. 1805-1814 ◽  
Author(s):  
J S Cox ◽  
R E Chapman ◽  
P Walter

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.


2021 ◽  
Vol 14 (684) ◽  
pp. eaaz4401
Author(s):  
Chandrima Ghosh ◽  
Jagadeesh Kumar Uppala ◽  
Leena Sathe ◽  
Charlotte I. Hammond ◽  
Ashish Anshu ◽  
...  

During cellular stress in the budding yeast Saccharomyces cerevisiae, an endoplasmic reticulum (ER)–resident dual kinase and RNase Ire1 splices an intron from HAC1 mRNA in the cytosol, thereby releasing its translational block. Hac1 protein then activates an adaptive cellular stress response called the unfolded protein response (UPR) that maintains ER homeostasis. The polarity-inducing protein kinases Kin1 and Kin2 contribute to HAC1 mRNA processing. Here, we showed that an RNA-protein complex that included the endocytic proteins Pal1 and Pal2 mediated HAC1 mRNA splicing downstream of Kin1 and Kin2. We found that Pal1 and Pal2 bound to the 3′ untranslated region (3′UTR) of HAC1 mRNA, and a yeast strain lacking both Pal1 and Pal2 was deficient in HAC1 mRNA processing. We also showed that Kin1 and Kin2 directly phosphorylated Pal2, and that a nonphosphorylatable Pal2 mutant could not rescue the UPR defect in a pal1Δ pal2Δ strain. Thus, our work uncovers a Kin1/2-Pal2 signaling pathway that coordinates HAC1 mRNA processing and ER homeostasis.


2017 ◽  
Vol 216 (8) ◽  
pp. 2295-2304 ◽  
Author(s):  
Norfadilah Hamdan ◽  
Paraskevi Kritsiligkou ◽  
Chris M. Grant

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


2008 ◽  
Vol 45 (10) ◽  
pp. 2990-2997 ◽  
Author(s):  
Juliana S. Kuribayashi ◽  
Cíntia R. Bombardieri ◽  
Gisele V. Baracho ◽  
Júlio Aliberti ◽  
Fabiana S. Machado ◽  
...  

2002 ◽  
Vol 362 (2) ◽  
pp. 491-498 ◽  
Author(s):  
François FOULQUIER ◽  
Anne HARDUIN-LEPERS ◽  
Sandrine DUVET ◽  
Ingrid MARCHAL ◽  
Anne Marie MIR ◽  
...  

The CHO (Chinese hamster ovary) glycosylation mutant cell line, B3F7, transfers the truncated glycan Glc3Man5GlcNAc2 on to nascent proteins. After deglucosylation, the resulting Man5GlcNAc2 glycan is subjected to two reciprocal enzymic processes: the action of an endoplasmic-reticulum (ER) kifunensine-sensitive α1,2-mannosidase activity to yield a Man4GlcNAc2 glycan, and the reglucosylation involved in the quality-control system which ensures that only correctly folded glycoproteins leave the ER. We show that the recombinant secreted alkaline phosphatase (SeAP) produced in stably transfected B3F7 cells, is co-immunoprecipitated with the GRP78 (glucose-regulated protein 78), a protein marker of the unfolded protein response (UPR). The level of GRP78 transcription has been evaluated by reverse transcription-PCR (RT-PCR) and we demonstrate that B3F7 cells present a constitutively higher level of UPR in the absence of inductors, compared with Pro−5 cells. Interestingly, a decrease was observed in the UPR and an increase in SeAP secretion in the kifunensine-treated B3F7 cells. Altogether, these data highlight the relationships between the glycan structure, the quality control system and the UPR. Moreover, they support the idea that a specific demannosylation step is a key event of the glycoprotein quality control in B3F7 cells.


2012 ◽  
Vol 196 (6) ◽  
pp. 689-698 ◽  
Author(s):  
Andrew E. Byrd ◽  
Ileana V. Aragon ◽  
Joseph W. Brewer

Stress in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a multifaceted signaling system coordinating translational control and gene transcription to promote cellular adaptation and survival. Microribonucleic acids (RNAs; miRNAs), single-stranded RNAs that typically function as posttranscriptional modulators of gene activity, have been shown to inhibit translation of certain secretory pathway proteins during the UPR. However, it remains unclear whether miRNAs regulate UPR signaling effectors directly. In this paper, we report that a star strand miRNA, miR-30c-2* (recently designated miR-30c-2-3p), is induced by the protein kinase RNA activated–like ER kinase (PERK) pathway of the UPR and governs expression of XBP1 (X-box binding protein 1), a key transcription factor that augments secretory capacity and promotes cell survival in the adaptive UPR. These data provide the first link between an miRNA and direct regulation of the ER stress response and reveal a novel molecular mechanism by which the PERK pathway, via miR-30c-2*, influences the scale of XBP1-mediated gene expression and cell fate in the UPR.


Sign in / Sign up

Export Citation Format

Share Document