protein quality control
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 168)

H-INDEX

68
(FIVE YEARS 8)

2021 ◽  
Vol 23 (1) ◽  
pp. 345
Author(s):  
Yaping Liu ◽  
Runrong Ding ◽  
Ze Xu ◽  
Yuan Xue ◽  
Dongdong Zhang ◽  
...  

Alzheimer’s disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy–lysosome system (ALS) and the ubiquitin–proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.


2021 ◽  
Author(s):  
Alison J Inglis ◽  
Alina Guna ◽  
Angel Galvez Merchan ◽  
Akshaye Pal ◽  
Theodore K Esantsi ◽  
...  

Translation of mRNAs containing premature termination codons (PTCs) can result in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance path-way responsible for detecting and degrading PTC containing transcripts. While the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational, and dependent on an intact ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors, and suggested a lack of dependence on the canonical ribosome-quality control (RQC) pathway. Finally, one of the strongest hits in our screens was the E3 ubiquitin ligase CNOT4, a member of the CCR4-NOT complex, which is involved in initiating mRNA degradation. We show that CNOT4 is involved in NMD coupled protein degradation, and its role depends on a functional RING ubiquitin ligase domain. Our results demonstrate the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a framework for identifying and characterizing factors involved in this process.


2021 ◽  
Author(s):  
Amanda B Abildgaard ◽  
Søren D Petersen ◽  
Fia B Larsen ◽  
Caroline Kampmeyer ◽  
Kristoffer E Johansson ◽  
...  

Protein quality control (PQC) degrons are short protein segments that target misfolded proteins for degradation through the ubiquitin-proteasome system (UPS). To uncover how PQC degrons function, we performed a screen in Saccharomyces cerevisiae by fusing a library of flexible tetrapeptides to the C-terminus of the Ura3-HA-GFP reporter. The identified degrons exhibited high sequence variation but with marked hydrophobicity. Notably, the best scoring degrons constitute predicted Hsp70-binding motifs. When directly tested, a canonical Hsp70 binding motif (RLLL) functioned as a dose-dependent PQC degron that was targeted by Hsp70, Hsp110, Fes1, several Hsp40 J-domain co-chaperones and the PQC E3 ligase Ubr1. Our results suggest that multiple PQC degrons overlap with chaperone-binding sites and that PQC-linked degradation achieves specificity via chaperone binding. Thus, the PQC system has evolved to exploit the intrinsic capacity of chaperones to recognize misfolded proteins, thereby placing them at the nexus of protein folding and degradation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13461
Author(s):  
Shin-ichi Muroi ◽  
Yoichiro Isohama

Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5′s plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.


2021 ◽  
Author(s):  
Yujie Li ◽  
Dawei Huang ◽  
Fugen Shangguan ◽  
Lianqun Jia ◽  
Linhua Lan ◽  
...  

Abstract Protein quality control is pivotal to cellular homeostasis and integrity of cardiomyocytes for maintenance of normal heart function. The unfolded protein response (UPR) is an adaptive process to modulate protein quality control in the endoplasmic reticulum (ER) and mitochondria, and is accordingly termed UPRER and UPRmt, respectively. Lon protease (LonP1) is a highly conserved mitochondrial protease to modulate UPRmt, which is involved in regulating metabolism, mitophagy, and stress response. However, whether LonP1 regulates UPRER remains elusive. To investigate the regulation of protein quality control in cardiomyocytes, we generated cardiac-specific LonP1 deletion mice. Our findings show that LonP1 deficiency caused impaired mitochondrial respiratory function and fragmentation. Surprisingly, both UPRER and UPRmt is substantially induced in LonP1-deletion heart suggesting of LonP1 as a novel regulator of UPRER; however, the activation of UPRER occurs earlier than UPRmt in response to LonP1 deletion. Consequently, cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming of cardiomyocytes, pathological heart remodeling, as well as impeded heart function. We uncovered the novel function of LonP1 as an UPRmt mediator, and reciprocal orchestration of UPRmt and UPRER and mitochondrial dynamics regulated by LonP1 in the cardiomyocytes that is critical to maintain heart function, which offers exciting new insights into the potential therapeutic strategy for heart failure.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1821
Author(s):  
Carolyn Allain Breckel ◽  
Mark Hochstrasser

The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.


2021 ◽  
Author(s):  
Peristera Roboti ◽  
Craig Lawless ◽  
Stephen High

ABSTRACTThe heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial TA protein MAVS (mitochondrial antiviral-signalling protein) as an endogenous client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6- associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection.SUMMARY STATEMENTMitochondrial antiviral-signalling (MAVS) protein is a favoured client of the cytosolic BAG6 complex. We discuss how this dynamic interaction may modulate MAVS biogenesis at signalling membranes.


2021 ◽  
Author(s):  
Caroline Kampmeyer ◽  
Sven Larsen-Ledet ◽  
Morten Rose Wagnkilde ◽  
Mathias Michelsen ◽  
Henriette K. M. Iversen ◽  
...  

Degrons are short stretches of amino acids or structural motifs that are embedded in proteins. They mediate recognition by E3 ubiquitin-protein ligases and thus confer protein degradation via the ubiquitin-proteasome system. Well-described degrons include the N-degrons, destruction boxes, and the PIP degrons, which mediate the controlled degradation of various proteins including signaling components and cell cycle regulators. In comparison, the so-called protein quality control (PQC) degrons that mediate the degradation of structurally destabilized or misfolded proteins are not well described. Here, we show that disease-linked DHFR missense variants are structurally destabilized and chaperone-dependent proteasome targets. We systematically mapped regions within DHFR to assess those that act as cytosolic PQC degrons in yeast cells. Two regions, DHFR-Deg13-36 (here Deg1) and DHFR-Deg61-84 (here Deg2), act as degrons and conferred degradation to unrelated fusion partners. The proteasomal turnover of Deg2 was dependent on the molecular chaperone Hsp70. Structural analyses by NMR and hydrogen/deuterium exchange revealed that Deg2 is buried in wild-type DHFR, but becomes transiently exposed in the disease-linked missense variants.


2021 ◽  
Vol 55 (S2) ◽  
pp. 120-143

Cells contain several proteins that routinely fulfill multiple requirements for normal physiological survival. Proteostasis dysfunction is linked with different complex human disorders, like cancer, neuron degeneration, and imperfect aging. The ubiquitin proteasome system (UPS) forms the primary proteostasis mechanism taking part in cytoprotection. Cancer cells are well known to possess enhanced cytoprotective properties, and different UPS elements are implicated to be dysregulated at several stages of tumor progression. Furthermore, many studies have found tumor cells to exhibit higher levels of various UPS components, possibly contributing to their robust endurance. In this article, we have presented different cellular protein quality control strategies, essential for maintaining healthy proteome. Here, we have also discussed key contributions and functions of UPS involved in molecular pathomechanisms for establishing cancer conditions. Along with this, the emerging different therapeutic strategies against defective proteome linked with improper cellular proliferation and cancer progression are also reviewed. UPS performs critical regulatory functions in modulating the cellular apoptotic pathways. The proteasomal system involvement as probable therapeutic targets influencing cancer cell apoptosis is also discussed. Our article summarizes the recent developments in proteasome-associated pathways regulating tumor cell proteome and survival. Additionally, how the engagement and cross functions of these physiological processes can induce apoptosis and may develop regulation over tumor progression. A better understanding of multifaceted protein quality control pathways may inform therapeutic interventions based on cellular proteostasis response determined against complex diseases.


Sign in / Sign up

Export Citation Format

Share Document