scholarly journals Cnm67p Is a Spacer Protein of theSaccharomyces cerevisiaeSpindle Pole Body Outer Plaque

2001 ◽  
Vol 12 (8) ◽  
pp. 2519-2533 ◽  
Author(s):  
Florian Schaerer ◽  
Garry Morgan ◽  
Mark Winey ◽  
Peter Philippsen

In Saccharomyces cerevisiae, the spindle pole body (SPB) is the functional homolog of the mammalian centrosome, responsible for the organization of the tubulin cytoskeleton. Cytoplasmic (astral) microtubules essential for the proper segregation of the nucleus into the daughter cell are attached at the outer plaque on the SPB cytoplasmic face. Previously, it has been shown that Cnm67p is an integral component of this structure; cells deleted forCNM67 are lacking the SPB outer plaque and thus experience severe nuclear migration defects. With the use of partial deletion mutants of CNM67, we show that the N- and C-terminal domains of the protein are important for nuclear migration. The C terminus, not the N terminus, is essential for Cnm67p localization to the SPB. On the other hand, only the N terminus is subject to protein phosphorylation of a yet unknown function. Electron microscopy of SPB serial thin sections reveals that deletion of the N- or C-terminal domains disturbs outer plaque formation, whereas mutations in the central coiled-coil domain of Cnm67p change the distance between the SPB core and the outer plaque. We conclude that Cnm67p is the protein that connects the outer plaque to the central plaque embedded in the nuclear envelope, adjusting the space between them by the length of its coiled-coil.

Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 705-720 ◽  
Author(s):  
Heather B McDonald ◽  
Astrid Hoes Helfant ◽  
Erin M Mahony ◽  
Shaun K Khosla ◽  
Loretta Goetsch

AbstractThe ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles.


2002 ◽  
Vol 13 (4) ◽  
pp. 1203-1214 ◽  
Author(s):  
Gregory C. Tomlin ◽  
Jennifer L. Morrell ◽  
Kathleen L. Gould

The Schizosaccharomyces pombe septation initiation network (SIN) signals the onset of cell division from the spindle pole body (SPB) and is regulated by the small GTPase Spg1p. The localization of SIN components including Spg1p to the SPB is required for cytokinesis and is dependent on Sid4p, a constitutive resident of SPBs. However, a direct interaction between Sid4p and other members of the SIN has not been detected. To understand how Sid4p is linked to other SIN components, we have begun to characterize an S. pombe homolog of the Saccharomyces cerevisiaeSPB protein Nud1p. We have determined that this S. pombeNud1p homolog corresponds to Cdc11p, a previously uncharacterized SIN element. We report that Cdc11p is present constitutively at SPBs and that its function appears to be required for the localization of all other SIN components to SPBs with the exception of Sid4p. The Cdc11p C terminus localizes the protein to SPBs in a Sid4p-dependent manner, and we demonstrate a direct Cdc11p-Sid4p interaction. The N-terminus of Cdc11p is required for Spg1p binding to SPBs. Our studies indicate that Cdc11p provides a physical link between Sid4p and the Spg1p signaling pathway.


2006 ◽  
Vol 174 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Sue L. Jaspersen ◽  
Adriana E. Martin ◽  
Galina Glazko ◽  
Thomas H. Giddings ◽  
Garry Morgan ◽  
...  

The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication.


2010 ◽  
Vol 189 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Yasuhiro Araki ◽  
Linda Gombos ◽  
Suellen P.S. Migueleti ◽  
Lavanya Sivashanmugam ◽  
Claude Antony ◽  
...  

Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2–Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.


2004 ◽  
Vol 15 (4) ◽  
pp. 1609-1622 ◽  
Author(s):  
Masamitsu Sato ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Nirada Koonrugsa ◽  
Takashi Toda

The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.


2002 ◽  
Vol 7 (11) ◽  
pp. 1113-1124 ◽  
Author(s):  
Takahiro Nakamura ◽  
Koji Nagao ◽  
Yukinobu Nakaseko ◽  
Mitsuhiro Yanagida

2010 ◽  
Vol 21 (21) ◽  
pp. 3693-3707 ◽  
Author(s):  
Erin M. Mathieson ◽  
Yasuyuki Suda ◽  
Mark Nickas ◽  
Brian Snydsman ◽  
Trisha N. Davis ◽  
...  

During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.


1994 ◽  
Vol 125 (4) ◽  
pp. 853-866 ◽  
Author(s):  
M A Osborne ◽  
G Schlenstedt ◽  
T Jinks ◽  
P A Silver

The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.


2000 ◽  
Vol 113 (3) ◽  
pp. 545-554 ◽  
Author(s):  
S. Ikemoto ◽  
T. Nakamura ◽  
M. Kubo ◽  
C. Shimoda

Spindle pole bodies in the fission yeast Schizosaccharomyces pombe are required during meiosis, not only for spindle formation but also for the assembly of forespore membranes. The spo15 mutant is defective in the formation of forespore membranes, which develop into spore envelopes. The spo15(+)gene encodes a protein with a predicted molecular mass of 223 kDa, containing potential coiled-coil regions. The spo15 gene disruptant was not lethal, but was defective in spore formation. Northern and western analyses indicated that spo15(+) was expressed not only in meiotic cells but also in vegetative cells. When the spo15-GFP fusion gene was expressed by the authentic spo15 promoter during vegetative growth and sporulation, the fusion protein colocalized with Sad1p, which is a component of spindle pole bodies. Meiotic divisions proceeded in spo15delta cells with kinetics similar to those in wild-type cells. In addition, the morphology of the mitotic and meiotic spindles and the nuclear segregation were normal in spo15delta. Intriguingly, transformation of spindle pole bodies from a punctate to a crescent form prior to forespore membrane formation was not observed in spo15delta cells. We conclude that Spo15p is associated with spindle pole bodies throughout the life cycle and plays an indispensable role in the initiation of spore membrane formation.


Sign in / Sign up

Export Citation Format

Share Document