vesicle docking
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 23)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Vol 8 (12) ◽  
pp. 280-296
Author(s):  
Cinzia Klemm ◽  
Henry Wood ◽  
Grace Heredge Thomas ◽  
Guðjón Ólafsson ◽  
Mara Teixeira ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly infectious coronavirus disease COVID-19. Extensive research has been performed in recent months to better understand how SARS-CoV-2 infects and manipulates its host to identify potential drug targets and support patient recovery from COVID-19. However, the function of many SARS-CoV-2 proteins remains uncharacterised. Here we used the Synthetic Physical Interactions (SPI) method to recruit SARS-CoV-2 proteins to most of the budding yeast proteome to identify conserved pathways which are affected by SARS-CoV-2 proteins. The set of yeast proteins that result in growth defects when associated with the viral proteins have homologous functions that overlap those identified in studies performed in mammalian cells. Specifically, we were able to show that recruiting the SARS-CoV-2 NSP1 protein to HOPS, a vesicle-docking complex, is sufficient to perturb membrane trafficking in yeast consistent with the hijacking of the endoplasmic-reticulum–Golgi intermediate compartment trafficking pathway during viral infection of mammalian cells. These data demonstrate that the yeast SPI method is a rapid way to identify potential functions of ectopic viral proteins.


2021 ◽  
Author(s):  
Chao Tan ◽  
Shan Shan H Wang ◽  
Giovanni de Nola ◽  
Pascal S Kaeser

Active zones are molecular machines that control neurotransmitter release through synaptic vesicle docking and priming, and through coupling of these vesicles to Ca2+ entry. The complexity of active zone machinery has made it challenging to determine which mechanisms drive these roles in release. Here, we induce RIM+ELKS knockout to eliminate active zone scaffolding networks, and then reconstruct each active zone function. Re-expression of RIM1-Zn fingers positioned Munc13 on undocked vesicles and rendered them release-competent. Reconstitution of release-triggering required docking of these vesicles to Ca2+ channels. Fusing RIM1-Zn to CaVbeta4-subunits sufficed to restore docking, priming and release-triggering without reinstating active zone scaffolds. Hence, exocytotic activities of the 80 kDa CaVbeta4-Zn fusion protein bypassed the need for megadalton-sized secretory machines. These data define key mechanisms of active zone function, establish that fusion competence and docking are mechanistically separable, and reveal that active zone scaffolding networks are not required for release.


2021 ◽  
Vol 22 (22) ◽  
pp. 12253
Author(s):  
Fatma Mansour ◽  
Felix J. Boivin ◽  
Iman B. Shaheed ◽  
Markus Schueler ◽  
Kai M. Schmidt-Ott

The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.


Author(s):  
Yu Zhang ◽  
Lilin He ◽  
Xiaoqian Chen ◽  
Ping Shentu ◽  
Yingke Xu ◽  
...  

2021 ◽  
Author(s):  
Dennis J. Weingarten ◽  
Amita Shrestha ◽  
Sarah A. Kissiwaa ◽  
Evan Spruston ◽  
Skyler L. Jackman

AbstractSustained neuronal activity demands quick resupply of synaptic vesicles in order to maintain reliable synaptic transmission. Such vesicle replenishment is accelerated by sub-micromolar presynaptic Ca2+ signals by an as yet unidentified high-affinity Ca2+ sensor1-4. Here we identify a novel presynaptic role for the high-affinity Ca2+ sensor Synaptotagmin-3 (SYT3)5 in driving vesicle replenishment and short-term synaptic plasticity. Synapses in Syt3 knockout mice exhibit enhanced short-term depression, and recovery is slower and insensitive to presynaptic residual Ca2+. During sustained neuronal firing, SYT3 speeds vesicle replenishment and increases the size of the readily releasable pool of vesicles. SYT3 also mediates a second form of short-term enhancement called facilitation, under conditions of low vesicle release probability. Models of vesicle trafficking suggest that SYT3 could combat synaptic depression by accelerating vesicle docking at active zones. Our results reveal a critical role for presynaptic SYT3 in maintaining reliable high-frequency synaptic transmission in neural circuits.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jason D Vevea ◽  
Grant F Kusick ◽  
Kevin C Courtney ◽  
Erin Chen ◽  
Shigeki Watanabe ◽  
...  

Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. ‘Zap-and-freeze’ electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.


2021 ◽  
Author(s):  
Lihao Ge ◽  
Wonchul Shin ◽  
Ling-Gang Wu

Vesicle fusion is assumed to occur at flat membrane of excitable cells. In live neuroendocrine cells, we visualized vesicle fusion at Ω-shape membrane generated by preceding fusion, termed sequential compound fusion, which may be followed by fusion pore closure, termed compound kiss-and-run. These novel fusion modes contribute to vesicle docking, multi-vesicular release, asynchronous release, and endocytosis. We suggest modifying current models of exo-endocytosis to include these new fusion modes.


Author(s):  
Najeeb Ullah ◽  
Ezzouhra El Maaiden ◽  
Md. Sahab Uddin ◽  
Ghulam Md Ashraf

: The fusion of secretory vesicles with the plasma membrane depends on the assembly of v-SNAREs (VAMP2/synaptobrevin2) and t-SNAREs (SNAP25/syntaxin1) into the SNARE complex. Vesicles go through several upstream steps, referred to as docking and priming, to gain fusion competence. The vesicular protein synaptotagmin-1 (Syt-1) is the principal Ca2+ sensor for fusion in several central nervous system neurons and neuroendocrine cells and part of the docking complex for secretory granules. Syt-1 binds to the acceptor complex such as synaxin1, SNAP-25 on the plasma membrane to facilitate secretory vesicle docking, and upon Ca2+-influx promotes vesicle fusion. This review assesses the role of the Syt-1 protein involved in the secretory vesicle docking, priming, and fusion.


2021 ◽  
Author(s):  
Jie Zhu ◽  
Zachary A McDargh ◽  
Feng Li ◽  
Shyam Krishnakumar ◽  
James E Rothman ◽  
...  

Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor Synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release (Wang et al., 2014). Here we combined mathematical modeling with experiment to measure mechanical properties of Syt rings and to test this mechanism. Consistent with experiment, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers, and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently PIP2-rich plasma membrane (PM) domains the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.


2021 ◽  
Vol 50 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Tobias Grothe ◽  
Julia Nowak ◽  
Reinhard Jahn ◽  
Peter Jomo Walla

AbstractIn the past decade, we developed various fluorescence-based methods for monitoring membrane fusion, membrane docking, distances between membranes, and membrane curvature. These tools were mainly developed using liposomes as model systems, which allows for the dissection of specific interactions mediated by, for example, fusion proteins. Here, we provide an overview of these methods, including two-photon fluorescence cross-correlation spectroscopy and intramembrane Förster energy transfer, with asymmetric labelling of inner and outer membrane leaflets and the calibrated use of transmembrane energy transfer to determine membrane distances below 10 nm. We discuss their application range and their limitations using examples from our work on protein-mediated vesicle docking and fusion.


Sign in / Sign up

Export Citation Format

Share Document