scholarly journals Molecular cloning and characterization of human kinectin.

1995 ◽  
Vol 6 (2) ◽  
pp. 161-170 ◽  
Author(s):  
A Fütterer ◽  
G Kruppa ◽  
B Krämer ◽  
H Lemke ◽  
M Krönke

We have identified a human cDNA that is homologous to the chicken kinectin, a putative receptor for the organelle motor kinesin. The human cDNA clone hybridized to a single 4.6-kb mRNA species that codes for a protein of 156 kDa molecular mass. The predicted primary translation product contains an N-terminal transmembrane helix followed by a bipartite nuclear localization sequence and two further C-terminal leucine zipper motifs. In addition, the aminoacid sequence revealed a large region (327-1362) of predicted alpha-helical coiled coils. A monoclonal antibody CT-1 raised against a GST-kinectin fusion protein produced a perinuclear, endoplasmic reticulum-like staining pattern in diverse cell types from different species, indicating evolutionary conservation. Monoclonal antibody CT-1 and anti-chicken kinectin antibodies cross-reacted both in Western blotting and immunoprecipitation with a 160-kDa protein, confirming the antigenic identity of this 160-kDa protein with chicken kinectin. Epitope tagging studies revealed that the nuclear localization sequence motif of kinectin is not functional. Furthermore, a truncated kinesin cDNA lacking the N-terminal hydrophobic domain revealed a nonspecific cytoplasmic staining pattern. Together the data suggest that kinectin is an integral membrane protein anchored in the endoplasmic reticulum via a transmembrane domain.

1995 ◽  
Vol 15 (7) ◽  
pp. 3627-3634 ◽  
Author(s):  
K Tatei ◽  
M Levine

The Rel family of transcription factors participate in a diverse array of processes, including acute responses to injury and infection, lymphocyte differentiation, and embryonic patterning. These proteins show homology in an extended region spanning about 300 amino acids (the Rel homology domain [RHD]). The RHD mediates both DNA binding and interactions with a family of inhibitor proteins, including I kappa B alpha and cactus. Previous studies have shown that an N-terminal region of the RHD (containing the sequence motif RXXRXRXXC) is important for DNA binding, while the C-terminal nuclear localization sequence is important for inhibitor interactions. Here we present a structure-function analysis of the Drosophila dorsal RHD. These studies identify another sequence within the RHD (region I) that is essential for inhibitor interactions. There is a tight correlation between the conservation of region I sequences and the specificity of Rel-inhibitor interactions in both flies and mammals. Point mutations in the region I sequence can uncouple DNA binding and inhibitor interactions in vitro. The phenotypes associated with the expression of a modified dorsal protein in transgenic Drosophila embryos suggest a similar uncoupling in vivo. Recent crystallographic studies suggest that the region I sequence and the nuclear localization sequence might form a composite surface which interacts with inhibitor proteins.


1993 ◽  
Vol 268 (29) ◽  
pp. 22100-22104
Author(s):  
J.H. Wessendorf ◽  
S Garfinkel ◽  
X Zhan ◽  
S Brown ◽  
T Maciag

2003 ◽  
Vol 49 (5) ◽  
pp. 1297-1307 ◽  
Author(s):  
Lars Fichtner ◽  
Daniel Jablonowski ◽  
Angelika Schierhorn ◽  
Hiroko K. Kitamoto ◽  
Michael J. R. Stark ◽  
...  

2000 ◽  
Vol 353 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Lyndall J. BRIGGS ◽  
Ricky W. JOHNSTONE ◽  
Rachel M. ELLIOT ◽  
Chong-Yun XIAO ◽  
Michelle DAWSON ◽  
...  

Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstrating its ability to target a heterologous protein to the nucleus, and to be phosphorylated specifically by the CcN-motif-phosphorylating protein kinase CK2 (CK2). The IFI 16 NLS, however, has novel properties, conferring ATP-dependent nuclear import completely independent of cytosolic factors, as well as binding to nuclear components. The IFI 16 NLS is not recognized with high affinity by the NLS-binding importin heterodimer, and transport mediated by it is insensitive to non-hydrolysable GTP analogues. The IFI 16 NLS thus mediates nuclear import through a pathway completely distinct from that of conventional NLSs, such as that of T-ag, but intriguingly resembling that of the NLS of the HIV-1 transactivator protein Tat. Since the IFI 16 CK2 site enhances nuclear import through facilitating binding to nuclear components, this represents a novel mechanism by which the site regulates nuclear-protein import, and constitutes a difference between the IFI 16 and Tat NLSs that may be of importance in the immune response.


Author(s):  
Rüdiger Horstkorte ◽  
Bettina Büttner ◽  
Kaya Bork ◽  
Navdeep Sahota ◽  
Sarah Sabir ◽  
...  

Author(s):  
Kenji Ishida ◽  
Evaristus C. Mbanefo ◽  
Loc Le ◽  
Olivia Lamanna ◽  
Luke F. Pennington ◽  
...  

AbstractThe transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor is an important mediator of nociception and its expression is enriched in nociceptive neurons. TRPV1 signaling has been implicated in bladder pain and is a potential analgesic target. Resiniferatoxin is the most potent known agonist of TRPV1. Acute exposure of the rat bladder to resiniferatoxin has been demonstrated to result in pain-related freezing and licking behaviors that are alleviated by virally encoded IL-4. The interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE) is a powerful inducer of IL-4 secretion, and is also known to alter host cell transcription through a nuclear localization sequence-dependent mechanism. We previously reported that IPSE ameliorates ifosfamide-induced bladder pain in an IL-4- and nuclear localization sequence-dependent manner. We hypothesized that pre-administration of IPSE to resiniferatoxin-challenged mice would dampen pain-related behaviors. IPSE indeed lessened resiniferatoxin-triggered freezing behaviors in mice. This was a nuclear localization sequence-dependent phenomenon, since administration of a nuclear localization sequence mutant version of IPSE abrogated IPSE’s analgesic effect. In contrast, IPSE’s analgesic effect did not seem IL-4-dependent, since use of anti-IL-4 antibody in mice given both IPSE and resiniferatoxin did not dramatically affect freezing behaviors. RNA-Seq analysis of resiniferatoxin- and IPSE-exposed bladders revealed differential expression of TNF/NF-κb-related signaling pathway genes. In vitro testing of IPSE uptake by urothelial cells and TRPV1-expressing neuronal cells showed uptake by both cell types. Thus, IPSE’s nuclear localization sequence-dependent therapeutic effects on TRPV1-mediated bladder pain may act on TRPV1-expressing neurons and/or may rely upon urothelial mechanisms.


Sign in / Sign up

Export Citation Format

Share Document