scholarly journals Ionizing Radiation–dependent γ-H2AX Focus Formation Requires Ataxia Telangiectasia Mutated and Ataxia Telangiectasia Mutated and Rad3-related

2005 ◽  
Vol 16 (5) ◽  
pp. 2566-2576 ◽  
Author(s):  
Joanna D. Friesner ◽  
Bo Liu ◽  
Kevin Culligan ◽  
Anne B. Britt

The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (γ-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of γ-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, ∼10% of IR-induced γ-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, γ-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1370
Author(s):  
Atsushi Shibata ◽  
Penny A. Jeggo

Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage—e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.


Oncogene ◽  
2004 ◽  
Vol 23 (21) ◽  
pp. 3872-3882 ◽  
Author(s):  
Yun-Gui Yang ◽  
Ulrich Cortes ◽  
Srinivas Patnaik ◽  
Maria Jasin ◽  
Zhao-Qi Wang

Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 1887-1896 ◽  
Author(s):  
Irina R. Matei ◽  
Rebecca A. Gladdy ◽  
Lauryl M. J. Nutter ◽  
Angelo Canty ◽  
Cynthia J. Guidos ◽  
...  

Abstract Mutations in ATM (ataxia-telangiectasia mutated) cause ataxia-telangiectasia (AT), a disease characterized by neurodegeneration, sterility, immunodeficiency, and T-cell leukemia. Defective ATM-mediated DNA damage responses underlie many aspects of the AT syndrome, but the basis for the immune deficiency has not been defined. ATM associates with DNA double-strand breaks (DSBs), and some evidence suggests that ATM may regulate V(D)J recombination. However, it remains unclear how ATM loss compromises lymphocyte development in vivo. Here, we show that T-cell receptor β (TCRβ)–dependent proliferation and production of TCRβlow CD4+CD8+ (DP) thymocytes occurred normally in Atm−/− mice. In striking contrast, the postmitotic maturation of TCRβlow DP precursors into TCRβint DP cells and TCRβhi mature thymocytes was profoundly impaired. Furthermore, Atm−/− thymocytes expressed abnormally low amounts of TCRα mRNA and protein. These defects were not attributable to the induction of a BCL-2–sensitive apoptotic pathway. Rather, they were associated with frequent biallelic loss of distal Va gene segments in DP thymocytes, revealing that ATM maintains Tcra locus integrity as it undergoes V(D)J recombination. Collectively, our data demonstrate that ATM loss increases the frequency of aberrant Tcra deletion events, which compromise DP thymocyte maturation and likely promote the generation of oncogenic TCR translocations.


2006 ◽  
Vol 281 (25) ◽  
pp. 17482-17491 ◽  
Author(s):  
Sharon Biton ◽  
Inbal Dar ◽  
Leonid Mittelman ◽  
Yaron Pereg ◽  
Ari Barzilai ◽  
...  

2007 ◽  
Vol 189 (9) ◽  
pp. 3496-3501 ◽  
Author(s):  
Estrella Guarino ◽  
Alfonso Jiménez-Sánchez ◽  
Elena C. Guzmán

ABSTRACT The observed lengthening of the C period in the presence of a defective ribonucleoside diphosphate reductase has been assumed to be due solely to the low deoxyribonucleotide supply in the nrdA101 mutant strain. We show here that the nrdA101 mutation induces DNA double-strand breaks at the permissive temperature in a recB-deficient background, suggesting an increase in the number of stalled replication forks that could account for the slowing of replication fork progression observed in the nrdA101 strain in a Rec+ context. These DNA double-strand breaks require the presence of the Holliday junction resolvase RuvABC, indicating that they have been generated from stalled replication forks that were processed by the specific reaction named “replication fork reversal.” Viability results supported the occurrence of this process, as specific lethality was observed in the nrdA101 recB double mutant and was suppressed by the additional inactivation of ruvABC. None of these effects seem to be due to the limitation of the deoxyribonucleotide supply in the nrdA101 strain even at the permissive temperature, as we found the same level of DNA double-strand breaks in the nrdA + strain growing under limited (2-μg/ml) or under optimal (5-μg/ml) thymidine concentrations. We propose that the presence of an altered NDP reductase, as a component of the replication machinery, impairs the progression of the replication fork, contributing to the lengthening of the C period in the nrdA101 mutant at the permissive temperature.


Sign in / Sign up

Export Citation Format

Share Document