dna strand break
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 22)

H-INDEX

39
(FIVE YEARS 1)

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 230
Author(s):  
Ramya Ambur Sankaranarayanan ◽  
Jennifer Peil ◽  
Andreas T. J. Vogg ◽  
Carsten Bolm ◽  
Steven Terhorst ◽  
...  

PARP1 inhibitors (PARPi) are currently approved for BRCAmut metastatic breast cancer, but they have shown limited response in triple negative breast cancer (TNBC) patients. Combination of an Auger emitter with PARPis enables PARP inhibition and DNA strand break induction simultaneously. This will enhance cytotoxicity and additionally allow a theranostic approach. This study presents the radiosynthesis of the Auger emitter [125I] coupled olaparib derivative: [125I]-PARPi-01, and its therapeutic evaluation in a panel of TNBC cell lines. Specificity was tested by a blocking assay. DNA strand break induction was analysed by γH2AX immunofluorescence staining. Cell cycle analysis and apoptosis assays were studied using flow cytometry in TNBC cell lines (BRCAwt/mut). Anchorage independent growth potential was evaluated using soft agar assay. [125I]-PARPi-01 showed PARP1-specificity and higher cytotoxicity than olaparib in TNBC cell lines irrespective of BRCA their status. Cell lines harbouring DNA repair deficiency showed response to [125I]-PARPi-01 monotherapy. Combined treatment with Dox-NP further enhanced therapeutic efficiency in metastatic resistant BRCAwt cell lines. The clonogenic survival was significantly reduced after treatment with [125I]-PARPi-01 in all TNBC lines investigated. Therapeutic efficacy was further enhanced after combined treatment with chemotherapeutics. [125I]-PARPi-01 is a promising radiotherapeutic agent for low radiation dosages, and mono/combined therapies of TNBC.


2021 ◽  
Vol 29 (4) ◽  
pp. 489-498
Author(s):  
Arabinda Patar ◽  
Indranil Das ◽  
Sarbani Giri ◽  
Anirudha Giri

Aquatic environments are often contaminated with zinc. Amphibian tadpoles are likely to be exposed to high concentrations of zinc present in these environments. We determined the acute and sub-chronic toxicity of ZnCl2 on Fejervarya limnocharis tadpoles under laboratory conditions. The LC50 values of ZnCl2 were found to be 5.81, 4.32, 3.79 and 3.61 mg/L at 24, 48, 72 and 96 h of exposure respectively. Long-term exposure to sub-lethal concentrations of ZnCl2 induced significant mortality in concentration and time dependent manner. Sub-lethal ZnCl2 exposure significantly altered survival, body length and body weight at metamorphosis. Micronucleus test and comet assay indicated the genotoxic potential of ZnCl2. Significant increase in DNA strand break was observed following ZnCl2 exposure equivalent to 1% of the of 24 h LC50 value. The findings indicate possible adverse to tadpoles inhabiting aquatic environments contaminated with zinc. In addition, the findings may be extrapolated to aquatic organisms of similar torphic status.


Author(s):  
Catherine J. Pears ◽  
Julien Brustel ◽  
Nicholas D. Lakin

Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.


Open Biology ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Heeyoun Bunch ◽  
Jaehyeon Jeong ◽  
Keunsoo Kang ◽  
Doo Sin Jo ◽  
Anh T. Q. Cong ◽  
...  

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3282
Author(s):  
Apisada Jiso ◽  
Philipp Demuth ◽  
Madeleine Bachowsky ◽  
Manuel Haas ◽  
Nina Seiwert ◽  
...  

Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.


2021 ◽  
Author(s):  
Marie-France Langelier ◽  
Ramya Billur ◽  
Aleksandr Sverzhinsky ◽  
Ben E. Black ◽  
John M. Pascal

Upon detecting DNA strand breaks, PARP1 and PARP2 produce the posttranslational modification poly(ADP-ribose) to orchestrate the cellular response to DNA damage. Histone PARylation factor 1 (HPF1) binds to PARP1/2 to directly regulate their catalytic output. HPF1 is required for the modification of serine residues with ADP-ribose, whereas glutamate/aspartate residues are modified in the absence of HPF1. PARP1 is an abundant nuclear protein, whereas HPF1 is present in much lower amounts, raising the question of whether HPF1 can pervasively modulate PARP1 activity. Here we show biochemically that HPF1 efficiently regulates PARP1/2 catalytic output at the sub-stoichiometric ratios matching their relative cellular abundances. HPF1 rapidly associates and dissociates from multiple PARP1 molecules, initiating ADP-ribose modification of serine residues before modification can initiate on glutamate/aspartate residues. HPF1 accelerates the rate of attaching the first ADP-ribose, such that this initiation event is comparable to the rate of the elongation reaction to form poly(ADP-ribose). This hit and run mechanism ensures that HPF1 contributions to the PARP1/2 active site during initiation do not persist and interfere with PAR chain elongation at sites of DNA damage. HPF1 thereby balances initiation and elongation events to regulate PARP1/2 output. Structural analysis of HPF1 in complex with PARP1 provides first insights into the assembly on a DNA strand break, and the HPF1 impact on PARP1 retention on DNA. Our data support the prevalence of the serine-ADP-ribose modification in cells and establish that HPF1 imparts the efficiency of serine-ADP-ribose modification required for an acute response to DNA damage. 


Author(s):  
Yogendra Singh Rajpurohit ◽  
Dhirendra Kumar Sharma ◽  
Hari S. Misra

DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.


2021 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Maria Rita Fabbrizi ◽  
Jonathan R. Hughes ◽  
Jason L. Parsons

The comet assay is a versatile, simple, and sensitive gel electrophoresis–based method that can be used to measure and accurately quantify DNA damage, particularly single and double DNA strand breaks, in single cells. While generally this is used to measure variation in DNA strand break levels and repair capacity within a population of cells, the technique has more recently been adapted and evolved into more complex analysis and detection of specific DNA lesions, such as oxidized purines and pyrimidines, achieved through the utilization of damage-specific DNA repair enzymes following cell lysis. Here, we detail a version of the enzyme-modified neutral comet (EMNC) assay for the specific detection of complex DNA damage (CDD), defined as two or more DNA damage lesions within 1–2 helical turns of the DNA. CDD induction is specifically relevant to ionizing radiation (IR), particularly of increasing linear energy transfer (LET), and is known to contribute to the cell-killing effects of IR due to the difficult nature of its repair. Consequently, the EMNC assay reveals important details regarding the extent and complexity of DNA damage induced by IR, but also has potential for the study of other genotoxic agents that may induce CDD.


2020 ◽  
Author(s):  
Jaehyeon Jeong ◽  
Keunsoo Kang ◽  
Doo Sin Jo ◽  
Anh T Cong ◽  
Donguk Kim ◽  
...  

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signaling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1 associated ring domain 1 (BARD1) complex, in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ATM and ATR during gene activation and that this event is essential for productive transcription. Our in vitro biochemical analyses showed TOP2B and BARD1 interaction and colocalization in the EGR1 transcription start site (TSS) and that the BRCA1-BARD1 complex ubiquitinates TOP2B, which appears to stabilize TOP2B protein in the cell and binding to DNA. Intriguingly, BRCA1 phosphorylation at S1524 controls this interaction. In addition, genomic analyses indicated colocalization between TOP2B and BRCA1 in a large number of protein-coding genes. Together, these findings reveal the novel function of the BRCA1-BARD1 complex in gene expression and in the regulation of TOP2B during Pol II transcription.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hana Hanzlikova ◽  
Evgeniia Prokhorova ◽  
Katerina Krejcikova ◽  
Zuzana Cihlarova ◽  
Ilona Kalasova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document