scholarly journals Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts

2011 ◽  
Vol 22 (22) ◽  
pp. 4220-4226 ◽  
Author(s):  
Marisa Connell ◽  
Clemens Cabernard ◽  
Derek Ricketson ◽  
Chris Q. Doe ◽  
Kenneth E. Prehoda

The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size.

mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Logan A. Collier ◽  
Arit Ghosh ◽  
Katherine A. Borkovich

ABSTRACT The filamentous fungus Neurospora crassa decomposes lignocellulosic biomass to generate soluble sugars as carbon sources. In this study, we investigated a role for heterotrimeric G-protein signaling in cellulose degradation. Loss of the Gα subunit genes gna-1 and gna-3, the Gβ subunit genes gnb-1 and cpc-2, the Gγ gene gng-1, or the gene for downstream effector adenylyl cyclase (cr-1) resulted in loss of detectable cellulase activity. This defect was also observed in strains expressing a constitutively active version of gna-3 (gna-3Q208L). We found that GNA-1 levels are greatly reduced in Δgna-3, Δgnb-1, and Δgng-1 strains, likely contributing to cellulase defects in these genetic backgrounds. The observation that gna-3Q208L Δgnb-1 strains exhibit cellulase activity, despite greatly reduced levels of GNA-1 protein, is consistent with positive control of cellulase production by GNA-3 that is manifested in the absence of gnb-1. Expression patterns for five cellulase genes showed that Δgna-1, Δgnb-1, and Δgna-3 mutants produce less cellulase mRNA than the wild type, consistent with transcriptional regulation. Δcpc-2 mutants had wild-type levels of cellulase transcripts, suggesting posttranscriptional control. In contrast, results for Δcr-1 mutants support both transcriptional and posttranscriptional control of cellulase activity by cAMP signaling. Cellulase activity defects in Δgna-3 mutants were fully remediated by cAMP supplementation, consistent with GNA-3 operating upstream of cAMP signaling. In contrast, cAMP addition only partially corrected cellulase activity defects in Δgna-1 and Δgnb-1 mutants, suggesting participation of GNA-1 and GNB-1 in additional cAMP-independent pathways that control cellulase activity. IMPORTANCE Filamentous fungi are critical for the recycling of plant litter in the biosphere by degrading lignocellulosic biomass into simpler compounds for metabolism. Both saprophytic and pathogenic fungi utilize plant cell wall-degrading enzymes to liberate carbon for metabolism. Several studies have demonstrated a role for cellulase enzymes during infection of economically relevant crops by fungal pathogens. Especially in developing countries, severe plant disease means loss of entire crops, sometimes leading to starvation. In this study, we demonstrate that G-protein signaling is a key component of cellulase production. Therefore, understanding the role of G-protein signaling in the regulation of the unique metabolism of cellulose by these organisms can inform innovations in strain engineering of industrially relevant species for biofuel production and in combatting food shortages caused by plant pathogens.


2019 ◽  
Vol 70 (1) ◽  
pp. 213-238 ◽  
Author(s):  
Sona Pandey

Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.


2007 ◽  
Vol 179 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Claudia Couwenbergs ◽  
Jean-Claude Labbé ◽  
Morgan Goulding ◽  
Thomas Marty ◽  
Bruce Bowerman ◽  
...  

Proper orientation and positioning of the mitotic spindle is essential for the correct segregation of fate determinants during asymmetric cell division. Although heterotrimeric G proteins and their regulators are essential for spindle positioning in many cell types, their mechanism of action remains unclear. In this study, we show that dyrb-1, which encodes a dynein light chain, provides a functional link between heterotrimeric G protein signaling and dynein activity during spindle positioning in Caenorhabditis elegans. Embryos depleted of dyrb-1 display phenotypes similar to a weak loss of function of dynein activity, indicating that DYRB-1 is a positive regulator of dynein. We find that the depletion of dyrb-1 enhances the spindle positioning defect of weak loss of function alleles of two regulators of G protein signaling, LIN-5 and GPR-1/2, and that DYRB-1 physically associates with these two proteins. These results indicate that dynein activity functions with regulators of G protein signaling to regulate common downstream effectors during spindle positioning in the early C. elegans embryo.


2016 ◽  
Vol 9 (446) ◽  
pp. ra93-ra93 ◽  
Author(s):  
Daisuke Urano ◽  
Natsumi Maruta ◽  
Yuri Trusov ◽  
Richard Stoian ◽  
Qingyu Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document