scholarly journals Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts

2013 ◽  
Vol 24 (24) ◽  
pp. 3869-3880 ◽  
Author(s):  
Wakam Chang ◽  
Eric S. Folker ◽  
Howard J. Worman ◽  
Gregg G. Gundersen

In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.

2017 ◽  
Vol 216 (3) ◽  
pp. 657-674 ◽  
Author(s):  
Cosmo A. Saunders ◽  
Nathan J. Harris ◽  
Patrick T. Willey ◽  
Brian M. Woolums ◽  
Yuexia Wang ◽  
...  

The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope–localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini–nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.


2016 ◽  
Vol 215 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Emily M. Hatch ◽  
Martin W. Hetzer

Repeated rounds of nuclear envelope (NE) rupture and repair have been observed in laminopathy and cancer cells and result in intermittent loss of nucleus compartmentalization. Currently, the causes of NE rupture are unclear. Here, we show that NE rupture in cancer cells relies on the assembly of contractile actin bundles that interact with the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex. We found that the loss of actin bundles or the LINC complex did not rescue nuclear lamina defects, a previously identified determinant of nuclear membrane stability, but did decrease the number and size of chromatin hernias. Finally, NE rupture inhibition could be rescued in cells treated with actin-depolymerizing drugs by mechanically constraining nucleus height. These data suggest a model of NE rupture where weak membrane areas, caused by defects in lamina organization, rupture because of an increase in intranuclear pressure from actin-based nucleus confinement.


1997 ◽  
Vol 110 (6) ◽  
pp. 707-720 ◽  
Author(s):  
W.E. Allen ◽  
G.E. Jones ◽  
J.W. Pollard ◽  
A.J. Ridley

Rho family proteins are known to regulate actin organization in fibroblasts, but their functions in cells of haematopoietic origin have not been studied in detail. Bac1.2F5 cells are a colony-stimulating factor-1 (CSF-1)-dependent murine macrophage cell line; CSF-1 stimulates their proliferation and motility, and acts as a chemoattractant. CSF-1 rapidly induced actin reorganization in Bac1 cells: it stimulated the formation of filopodia, lamellipodia and membrane ruffles at the plasma membrane, as well as the appearance of fine actin cables within the cell interior. Microinjection of constitutively activated (V12)Rac1 stimulated lamellipodium formation and membrane ruffling. The dominant inhibitory Rac mutant, N17Rac1, inhibited CSF-1-induced lamellipodium formation, and also induced cell rounding. V12Cdc42 induced the formation of long filopodia, while the dominant inhibitory mutant N17Cdc42 prevented CSF-1-induced formation of filopodia but not lamellipodia. V14RhoA stimulated actin cable assembly and cell contraction, while the Rho inhibitor, C3 transferase, induced the loss of actin cables. Bac1 cells had cell-to-substratum adhesion sites containing beta1 integrin, pp125FAK, paxillin, vinculin, and tyrosine phosphorylated proteins. These ‘focal complexes’ were present in growing and CSF-1-starved cells, but were disassembled in cells injected with N17Cdc42 or N17Rac1. Interestingly, beta1 integrin did not disperse until long after focal phosphotyrosine and vinculin staining had disappeared. We conclude that in Bac1 macrophages Cdc42, Rac and Rho regulate the formation of distinct actin filament-based structures, and that Cdc42 and Rac are also required for the assembly of adhesion sites to the extracellular matrix.


1999 ◽  
Vol 77 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Khaldon Bodoor ◽  
Sarah Shaikh ◽  
Paul Enarson ◽  
Sharmin Chowdhury ◽  
Davide Salina ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport


2018 ◽  
Author(s):  
Wakam Chang ◽  
Yuexia Wang ◽  
G.W. Gant Luxton ◽  
Cecilia Östlund ◽  
Howard J. Worman ◽  
...  

AbstractStudies of the accelerated aging disorder Hutchinson-Gilford progeria syndrome (HGPS) can potentially reveal cellular defects associated with physiological aging. HGPS results from expression and abnormal nuclear envelope association of a farnesylated, truncated variant of prelamin A called progerin. We surveyed the diffusional mobilities of nuclear membrane proteins to identify proximal effects of progerin expression. The mobilities of three proteins were reduced in fibroblasts from children with HGPS compared to normal fibroblasts: SUN2, nesprin-2G, and emerin. These proteins function together in nuclear movement and centrosome orientation in fibroblasts polarizing for migration. Both processes were impaired in fibroblasts from children with HGPS and in NIH3T3 fibroblasts expressing progerin, but were restored by inhibiting protein farnesylation. Progerin affected both the coupling of the nucleus to actin cables and the oriented flow of the cables necessary for nuclear movement and centrosome orientation. Progerin overexpression increased levels of SUN1, which couples the nucleus to microtubules through nesprin-2G and dynein, and microtubule association with the nucleus. Reducing microtubule-nuclear connections through SUN1 depletion or dynein inhibition rescued the polarity defects. Nuclear movement and centrosome orientation were also defective in fibroblasts from normal individuals over 60 years old and both defects were rescued by reducing the increased level of SUN1 in these cells or inhibiting dynein. Our results identify imbalanced nuclear engagement of the cytoskeleton (microtubules, high; actin filaments, low) as the basis for intrinsic cell polarity defects in HGPS and physiological aging and suggest that rebalancing the connections can ameliorate the defects.SignificanceThe rare, premature aging syndrome HGPS arises from expression of a pathological prelamin A variant, termed progerin. Studies of progerin may identify treatments for HGPS and reveal novel cellular and molecular characteristics of normal aging. Here, we show that progerin selectively affects mobilities of three nuclear membrane proteins, SUN2, nesprin-2G and emerin that position the nucleus and establish cell polarity essential for migration. We find that both processes are defective in fibroblasts from children with HGPS and aged (> 60 years) individuals. The mechanism underlying these defects is excessive interaction of the nucleus with microtubules. Our work identifies nuclear-based defects in cell polarization as intrinsic factors in premature and physiological aging and suggests means for correcting them.


1999 ◽  
Vol 112 (13) ◽  
pp. 2253-2264 ◽  
Author(s):  
K. Bodoor ◽  
S. Shaikh ◽  
D. Salina ◽  
W.H. Raharjo ◽  
R. Bastos ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized. Using both conventional and digital confocal immunofluorescence microscopy we have been able to define a time course of post-mitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a component of the nuclear basket, associates with chromatin towards the end of anaphase, in parallel with the inner nuclear membrane protein, LAP2. However, immunogold labeling suggests that the initial Nup153 chromatin association is membrane-independent. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, 54, 45) during mitosis and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates.


Cells ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 170 ◽  
Author(s):  
Elisabetta Mattioli ◽  
Marta Columbaro ◽  
Mohammed Hakim Jafferali ◽  
Elisa Schena ◽  
Einar Hallberg ◽  
...  

LMNA linked-Emery-Dreifuss muscular dystrophy (EDMD2) is a rare disease characterized by muscle weakness, muscle wasting, and cardiomyopathy with conduction defects. The mutated protein lamin A/C binds several nuclear envelope components including the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex and the inner nuclear membrane protein Samp1 (Spindle Associated Membrane Protein 1). Considering that Samp1 is upregulated during muscle cell differentiation and it is involved in nuclear movement, we hypothesized that it could be part of the protein platform formed by LINC proteins and prelamin A at the myotube nuclear envelope and, as previously demonstrated for those proteins, could be affected in EDMD2. Our results show that Samp1 is uniformly distributed at the nuclear periphery of normal human myotubes and committed myoblasts, but its anchorage at the nuclear poles is related to the presence of farnesylated prelamin A and it is disrupted by the loss of prelamin A farnesylation. Moreover, Samp1 is absent from the nuclear poles in EDMD2 myotubes, which shows that LMNA mutations associated with muscular dystrophy, due to reduced prelamin A levels in muscle cell nuclei, impair Samp1 anchorage. Conversely, SUN1 pathogenetic mutations do not alter Samp1 localization in myotubes, which suggests that Samp1 lies upstream of SUN1 in nuclear envelope protein complexes. The hypothesis that Samp1 is part of the protein platform that regulates microtubule nucleation from the myotube nuclear envelope in concert with pericentrin and LINC components warrants future investigation. As a whole, our data identify Samp1 as a new contributor to EDMD2 pathogenesis and our data are relevant to the understanding of nuclear clustering occurring in laminopathic muscle.


Sign in / Sign up

Export Citation Format

Share Document