actin reorganization
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 51)

H-INDEX

63
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Larbret ◽  
Pierric Biber ◽  
Nicholas Dubois ◽  
Stoyan Ivanov ◽  
Laurence Lafanechere ◽  
...  

Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kay Oliver Schink ◽  
Kia Wee Tan ◽  
Hélène Spangenberg ◽  
Domenica Martorana ◽  
Marte Sneeggen ◽  
...  

AbstractUptake of large volumes of extracellular fluid by actin-dependent macropinocytosis has an important role in infection, immunity and cancer development. A key question is how actin assembly and disassembly are coordinated around macropinosomes to allow them to form and subsequently pass through the dense actin network underlying the plasma membrane to move towards the cell center for maturation. Here we show that the PH and FYVE domain protein Phafin2 is recruited transiently to newly-formed macropinosomes by a mechanism that involves coincidence detection of PtdIns3P and PtdIns4P. Phafin2 also interacts with actin via its PH domain, and recruitment of Phafin2 coincides with actin reorganization around nascent macropinosomes. Moreover, forced relocalization of Phafin2 to the plasma membrane causes rearrangement of the subcortical actin cytoskeleton. Depletion of Phafin2 inhibits macropinosome internalization and maturation and prevents KRAS-transformed cancer cells from utilizing extracellular protein as an amino acid source. We conclude that Phafin2 promotes macropinocytosis by controlling timely delamination of actin from nascent macropinosomes for their navigation through the dense subcortical actin network.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaolin Chen ◽  
Jianhui Chen ◽  
Xianfan Li ◽  
Zengpu Yu

Abstract Objective Hyperglycemia is associated with albuminuria and renal glomerular endothelial dysfunction in patients with diabetic nephropathy. The mTOR and RhoA/ROCK signaling pathways are involved in glomerular filtration barrier (GFB) regulation, but their role in high glucose (HG)-induced GFB dysfunction in human renal glomerular endothelial cells (HRGECs) has not been investigated. This study aimed to investigate the mechanisms of HG-induced GFB dysfunction in vitro. Materials and methods HRGECs were cultured in vitro and exposed to HG. The horseradish peroxidase–albumin leakage and transendothelial electrical resistance of the endothelial monolayer were measured after HG treatment with or without rapamycin preincubation. A fluorescence probe was used to study the distribution of F-actin reorganization. The phosphorylation levels of myosin light chain (MLC) and mTOR were measured via western blotting. RhoA activity was evaluated via GTPase activation assay. The effects of blocking mTOR or the RhoA/ROCK pathway on endothelial permeability and MLC phosphorylation under HG conditions were observed. Results HG exposure induced F-actin reorganization and increased MLC phosphorylation, leading to EC barrier disruption. This effect was attenuated by treatment with rapamycin or Y-27632. Phospho-MLC (pMLC) activation in HRGECs was mediated by RhoA/ROCK signaling. mTOR and RhoA/ROCK inhibition or knockdown attenuated pMLC activation, F-actin reorganization and barrier disruption that occurred in response to HG exposure. Conclusions Our results revealed that HG stimulation upregulated RhoA expression and activity through an mTOR-dependent pathway, leading to MLC-mediated endothelial cell cytoskeleton rearrangement and glomerular endothelial barrier dysfunction.


2021 ◽  
Author(s):  
Manuel Izquierdo

T cell receptor (TCR) and B cell receptor (BCR) stimulation of T and B lymphocytes, by antigen presented on an antigen-presenting cell (APC) induces the formation of the immunological synapse (IS). IS formation is associated with an initial increase in cortical filamentous actin (F-actin) at the IS, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. This is followed by the convergence of secretion vesicles towards the centrosome, and the polarization of the centrosome to the IS. These reversible, cortical actin cytoskeleton reorganization processes occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, proteolytic granules secretion in B lymphocytes and during cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. In addition, several findings obtained in T and B lymphocytes forming IS show that actin cytoskeleton reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be associated with centrosome polarization. In this chapter we deal with the analysis of centrosomal area F-actin reorganization, as well as the centrosome polarization analysis towards the IS.


2021 ◽  
Author(s):  
Timothy J HAWKINS ◽  
Michaela Kopischke ◽  
David Mentlak ◽  
Patrick Duckney ◽  
Johan Kroon ◽  
...  

Members of the NETWORKED (NET) family are involved in actin-membrane interactions. They tether the cell's plasma membrane (PM) to the actin network. Moreover, in a similar manner, they are also involved in the tethering of membrane bound organelles to the actin cytoskeleton; the endoplasmic reticulum (ER) and the ER to the PM. This raises the question as to whether NET proteins are involved in actin cytoskeletal remodelling. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function as downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure depends on a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune signalling events and proper actin cytoskeletal remodelling.


2021 ◽  
Author(s):  
Yongduo Sun ◽  
Mengmeng Zhong ◽  
Yuanbao Li ◽  
Ruihui Zhang ◽  
Lei Su ◽  
...  

2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Sourabh Bhide ◽  
Denisa Gombalova ◽  
Gregor Mönke ◽  
Johannes Stegmaier ◽  
Valentyna Zinchenko ◽  
...  

The intrinsic genetic program of a cell is not sufficient to explain all of the cell’s activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress–strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.


Author(s):  
Julien Record ◽  
Mezida B. Saeed ◽  
Tomas Venit ◽  
Piergiorgio Percipalle ◽  
Lisa S. Westerberg

Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.


Author(s):  
Maria-Veronica Ciocanel ◽  
Qin Ni ◽  
Carli Mager ◽  
Garegin. Papoian ◽  
Adriana Dawes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document