Beyond Core Cognition: Natural Number

Author(s):  
Susan Carey
Author(s):  
Paula Quinon

AbstractAccording to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize (i.e., to assess an exact quantity of the elements in a collection without counting them), or on the ability to approximate quantities (i.e., to assess an approximate quantity of the elements in a collection without counting them), or both, fail to provide a conceptual basis for bootstrapping the concept of an exact natural number. In particular, I argue that none of the existing theories explains one of the key characteristics of the natural number structure: the equidistances between successive elements of the natural numbers progression. I suggest that this regularity could be based on another innate cognitive ability, namely sensitivity to the regularity of rhythm. In the final section, I propose a new position within the core cognition paradigm, inspired by structuralist positions in philosophy of mathematics.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


Axiomathes ◽  
2021 ◽  
Author(s):  
Andrew Powell

AbstractThis article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy of ordinal recursive functionals of arbitrary type that can be reduced by substitution to natural number functions.


Author(s):  
CARLO SANNA

Abstract Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-g Niven numbers.


The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.


2002 ◽  
Vol 133 (2) ◽  
pp. 325-343 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
AKIRA YASUHARA

In the 1990s, Habiro defined Ck-move of oriented links for each natural number k [5]. A Ck-move is a kind of local move of oriented links, and two oriented knots have the same Vassiliev invariants of order [les ] k−1 if and only if they are transformed into each other by Ck-moves. Thus he has succeeded in deducing a geometric conclusion from an algebraic condition. However, this theorem appears only in his recent paper [6], in which he develops his original clasper theory and obtains the theorem as a consequence of clasper theory. We note that the ‘if’ part of the theorem is also shown in [4], [9], [10] and [16], and in [13] Stanford gives another characterization of knots with the same Vassiliev invariants of order [les ] k−1.


1960 ◽  
Vol 25 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Jerome Keisler

IntroductionWe shall prove the following theorem, which gives a necessary and sufficient condition for an elementary class to be characterized by a set of sentences having a prescribed number of alternations of quantifiers. A finite sequence of relational systems is said to be a sandwich of order n if each is an elementary extension of (i ≦ n—2), and each is an extension of (i ≦ n—2). If K is an elementary class, then the statements (i) and (ii) are equivalent for each fixed natural number n.


2010 ◽  
Vol 52 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. J. R. MYERS

AbstractKummer's conjecture predicts the rate of growth of the relative class numbers of cyclotomic fields of prime conductor. We extend Kummer's conjecture to cyclotomic fields of conductor n, where n is any natural number. We show that the Elliott–Halberstam conjecture implies that this generalised Kummer's conjecture is true for almost all n but is false for infinitely many n.


1988 ◽  
Vol 22 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Noel Balzer
Keyword(s):  

2006 ◽  
Vol 29 (2) ◽  
pp. 229-238
Author(s):  
Richard Warlimont
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document