The Concise Oxford Dictionary of Mathematics

Author(s):  
Richard Earl ◽  
James Nicholson

Over 4,000 entries This informative A to Z provides clear, jargon-free definitions of a wide variety of mathematical terms. Its articles cover both pure and applied mathematics and statistics, and include key theories, concepts, methods, programmes, people, and terminology. For this sixth edition, around 800 new terms have been defined, expanding on the dictionary’s coverage of algebra, differential geometry, algebraic geometry, representation theory, and statistics. Among this new material are articles such as cardinal arithmetic, first fundamental form, Lagrange’s theorem, Navier-Stokes equations, potential, and splitting field. The existing entries have also been revised and updated to account for developments in the field. Numerous supplementary features complement the text, including detailed appendices on basic algebra, areas and volumes, trigonometric formulae, and Roman numerals. Newly added to these sections is a historical timeline of significant mathematicians’ lives and the emergence of key theorems. There are also illustrations, graphs, and charts throughout the text, as well as useful web links to provide access to further reading.

2020 ◽  
Vol 13 ◽  
pp. 72-82
Author(s):  
Stephen Perry ◽  

When we mathematically model natural phenomena, there is an assumption concerning how the mathematics relates to the actual phenomenon in question. This assumption is that mathematics represents the world by “mapping on” to it. I argue that this assumption of mapping, or correspondence between mathematics and natural phenomena, breaks down when we ignore the fine grain of our physical concepts. I show that this is a source of trouble for the mapping account of applied mathematics, using the case of Prandtl’s Boundary Layer solution to the Navier-Stokes equations.


2012 ◽  
Vol 709 ◽  
pp. 593-609 ◽  
Author(s):  
Jan Nordström ◽  
Björn Lönn

AbstractThe energy decay of vortices in viscous fluids governed by the compressible Navier–Stokes equations is investigated. It is shown that the main reason for the slow decay is that zero eigenvalues exist in the matrix related to the dissipative terms. The theoretical analysis is purely mathematical and based on the energy method. To check the validity of the theoretical result in practice, numerical solutions to the Navier–Stokes equations are computed using a stable high-order finite difference method. The numerical computations corroborate the theoretical conclusion.


1969 ◽  
Vol 13 (1) ◽  
pp. 72-83
Author(s):  
Stephen Perry

When we mathematically model natural phenomena, there is an assumption concerning how the mathematics relates to the actual phenomenon in question. This assumption is that mathematics represents the world by “mapping on” to it. I argue that this assumption of mapping, or correspondence between mathematics and natural phenomena, breaks down when we ignore the fine grain of our physical concepts. I show that this is a source of trouble for the mapping account of applied mathematics, using the case of Prandtl’s Boundary Layer solution to the Navier-Stokes equations.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document