3. Philosophical implications of relativity

2021 ◽  
pp. 46-63
Author(s):  
Jenann Ismael

‘Philosophical implications of relativity’ looks at the counterintuitive implications of the special theory of relativity. It begins with time dilation and length contraction, wherein the measurements of spatial distances and temporal intervals appear to vary with the motion of the observer. The question of whether relativity allows for the possibility of time travel is raised and the so-called paradoxes of time travel are explored.

2021 ◽  
pp. 1-3
Author(s):  
Joseph E Brierly ◽  

This article refutes the Time Dilation Equation and Length Contraction that are derived in the Special Theory of Relativity. The conclusion reached in this article is that Time Dilation and Length Contraction cannot be characterized by simple equations due to repulsion gravity. The conclusion follows from gravity being a natural force of repulsion rather than the assumption that gravity is an attraction force. That gravity is a repulsion force follows from the Sir Arthur Eddington experiment designed to prove that gravity affects light. Few looked at that experiment as anything other than proving Einstein’s General Theory of Relativity that suggested gravity would affect light. The experiment went beyond what most imagined it accomplished. It surely verified that gravity affects light. But it did more than that. The experiment showed that gravity is a force of repulsion and not attraction as most believed. That gravity is repulsion and not an attraction force indicates that the relativity time dilation equation derived in the Special Theory of Relativity is intractably undecidable likely subject to Godels Incompleteness theorems


2021 ◽  
pp. 1-3
Author(s):  
Robert J Buenker ◽  

The Lorentz transformation (LT) of Einstein's Special Theory of Relativity (STR) leads to the prediction of time dilation and length contraction in moving rest frames. In addition, the relativistic velocity transformation (RVT) is derived from the LT by simply taking the ratios of its space and time coordinates, and this in turn guarantees satisfaction of Einstein's light-speed constancy postulate. The Global Positioning Transformation (GPS-LT) is similar to the LT but differs from it in a significant way, namely it does not lead to the space-time mixing characteristic of the LT. The way in which time dilation is derived from both transformations is compared and it is shown that only the GPS-LT is self-consistent with respect to this key prediction of relativity theory


2017 ◽  
Vol 75 (3) ◽  
pp. 263-269
Author(s):  
Özgür Özcan

Special theory of relativity is one of the difficult subjects of physics to be understood by the students. The current research designed as a qualitative research aim to determine the pre-service physics teachers’ understanding level and the alternative conceptions about three core concepts of special theory of relativity, such as time dilatation, length contraction and reference frames. The data were collected through semi structured interviews and were analyzed by using content analysis. At the end of the analysis process the understanding level of the students was determined to be “complete understanding”, “incomplete understanding” and “misunderstanding”. In order to achieve this, the students’ conceptual frameworks based on the operational definitions made by the students were determined firstly. The findings obtained in this research indicate that high school teachers as well as university instructors should take special care with some points in the teaching of the subjects related with special theory of relativity. This research might be useful to other studies to be done in the future, especially for investigating the students’ mental models related to special theory of relativity. Key words: Length contraction, reference frames, special relativity, time dilatation, understanding level.


2017 ◽  
Vol 9 (3) ◽  
pp. 31
Author(s):  
Koshun Suto

In this paper, consider a rod A (inertial frame A) and rod B (inertial frame B) moving at constant velocity relative to each other. Assume that the lengths of two rods are equal when they are stationary. According to the STR, when length in the direction of motion of rod B, moving at constant velocity, is measured from inertial frame A, the rod contracts in the direction of motion. Also, the time which elapses on clock in inertial frame B is delayed compared to the time which elapses on clock in inertial frame A. If, conversely, inertial frame A is measured from inertial frame B, rod A contracts in the direction of motion, and the time which elapses on clock is delayed. However, according to classical common sense, if rod B contracts when measured from inertial frame A, then rod A measured from rod B must be longer than rod B. Thus, this paper discusses the symmetry of rod contraction, and elucidates this problem. It is found, based on the discussion in this paper, that the contraction of a rod includes true physical contraction, and relativistic contraction obtained due to measurement using the method indicated by Einstein. However, in the STR, any two inertial frames are equivalent, and therefore is not possible to accept points such as the fact that reasons for contraction are different. This paper concludes that STR is not a theory which describes the objective state of reality.


2017 ◽  
Vol 31 (26) ◽  
pp. 1750177
Author(s):  
Mirza Wasif Baig

The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.


2021 ◽  
Vol 34 (3) ◽  
pp. 366-368
Author(s):  
László G. Mészáros

Although Einstein’s special theory of relativity (STR) is more than a century old, the relation to reality of its predictions, such as length contraction, for instance, still seems obscure. Here, it is argued that the STR, by reason of observer-dependence and the contradicting nature of its predictions, describes a particular relationship of an observer to reality. Thus, it is concluded that the STR should be looked at as an account for a special kind of optical illusion.


1988 ◽  
Vol 156 (9) ◽  
pp. 137-143 ◽  
Author(s):  
Anatolii A. Logunov ◽  
Yu.V. Chugreev

Sign in / Sign up

Export Citation Format

Share Document