scholarly journals Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial

2019 ◽  
Vol 110 (4) ◽  
pp. 862-872 ◽  
Author(s):  
Cas J Fuchs ◽  
Wesley J H Hermans ◽  
Andrew M Holwerda ◽  
Joey S J Smeets ◽  
Joan M Senden ◽  
...  

ABSTRACTBackgroundProtein ingestion increases muscle protein synthesis rates. However, limited data are currently available on the effects of branched-chain amino acid (BCAA) and branched-chain ketoacid (BCKA) ingestion on postprandial muscle protein synthesis rates.ObjectiveThe aim of this study was to compare the impact of ingesting 6 g BCAA, 6 g BCKA, and 30 g milk protein (MILK) on the postprandial rise in circulating amino acid concentrations and subsequent myofibrillar protein synthesis rates in older males.MethodsIn a parallel design, 45 older males (age: 71 ± 1 y; BMI: 25.4 ± 0.8 kg/m2) were randomly assigned to ingest a drink containing 6 g BCAA, 6 g BCKA, or 30 g MILK. Basal and postprandial myofibrillar protein synthesis rates were assessed by primed continuous l-[ring-13C6]phenylalanine infusions with the collection of blood samples and muscle biopsies.ResultsPlasma BCAA concentrations increased following test drink ingestion in all groups, with greater increases in the BCAA and MILK groups compared with the BCKA group (P < 0.05). Plasma BCKA concentrations increased following test drink ingestion in all groups, with greater increases in the BCKA group compared with the BCAA and MILK groups (P < 0.05). Ingestion of MILK, BCAA, and BCKA significantly increased early myofibrillar protein synthesis rates (0–2 h) above basal rates (from 0.020 ± 0.002%/h to 0.042 ± 0.004%/h, 0.022 ± 0.002%/h to 0.044 ± 0.004%/h, and 0.023 ± 0.003%/h to 0.044 ± 0.004%/h, respectively; P < 0.001), with no differences between groups (P > 0.05). Myofibrillar protein synthesis rates during the late postprandial phase (2–5 h) remained elevated in the MILK group (0.039 ± 0.004%/h; P < 0.001), but returned to baseline values following BCAA and BCKA ingestion (0.024 ± 0.005%/h and 0.024 ± 0.005%/h, respectively; P > 0.05).ConclusionsIngestion of 6 g BCAA, 6 g BCKA, and 30 g MILK increases myofibrillar protein synthesis rates during the early postprandial phase (0–2 h) in vivo in healthy older males. The postprandial increase following the ingestion of 6 g BCAA and BCKA is short-lived, with higher myofibrillar protein synthesis rates only being maintained following the ingestion of an equivalent amount of intact milk protein. This trial was registered at Nederlands Trial Register (www.trialregister.nl) as NTR6047.

1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 650-650
Author(s):  
Kevin Paulussen ◽  
Amadeo Salvador ◽  
Colleen McKenna ◽  
Susannah Scaroni ◽  
Alexander Ulanov ◽  
...  

Abstract Objectives Healthy eating patterns consist of eating whole foods as opposed to single nutrients. The maintenance of skeletal muscle mass is of particular interest to overall health. As such, there is a need to underpin the role of eating nutrients within their natural whole-food matrix versus isolated nutrients on the regulation of postprandial muscle protein synthesis rates. This study assessed the effects of eating salmon, a potential food within a healthy Mediterranean style eating pattern, on the stimulation of post-exercise muscle protein synthesis rates versus eating these same nutrients in isolation in healthy young adults. Methods In a crossover design, 10 recreationally active adults (24 ± 4 y; 5 M, 5 F) performed an acute bout of resistance exercise followed by the ingestion of salmon (SAL) (20.5 g protein and 7.5 g fat) or its matched constituents in the form of crystalline amino acids and fish oil (ISO). Blood and muscle biopsies were collected at rest and after exercise at 2 and 5 h during primed continuous infusions of L-[ring-2H5]phenylalanine for the measurement of myofibrillar protein synthesis and plasma amino acid profiles. Data were analyzed by using a 2-factor (time × condition) repeated-measures ANOVA with Tukey's post hoc test. Results Plasma essential amino acid concentrations increased to a similar extent in both SAL and ISO during the postprandial period (P &gt; 0.05). Likewise, postprandial plasma leucine concentrations did not differ between nutrient condition (P &gt; 0.05). The post-exercise myofibrillar protein synthetic responses were similarly stimulated in both nutrition conditions early (0–2 h; 0.079 ± 0.039%/h (SAL) compared to 0.071 ± 0.078%/h (ISO); P = 0.64) and returned to baseline later (2–5 h; 0.046 ± 0.020%/h (SAL) compared to 0.038 ± 0.025%/h (ISO); P = 0.90). Similarly, there were no differences in the stimulation of myofibrillar protein synthesis rates between SAL and ISO during the entire 0–5 h recovery period (0.058 ± 0.024%/h compared to 0.045 ± 0.027%/h, respectively; P = 0.66). Conclusions We show that the ingestion of salmon or its isolated nutrients increases plasma amino acid concentrations and enhances the stimulation of post-exercise muscle protein synthesis rates with no differences in the temporal or cumulative responses in healthy young adults. Funding Sources USDA National Institute of Food and Agriculture Hatch project.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 517-517
Author(s):  
Philippe J.M. Pinckaers ◽  
Imre W.K. Kouw ◽  
Stefan H.M. Gorissen ◽  
Joan M. Senden ◽  
Lisette C.P.G.M. de Groot ◽  
...  

Abstract Objectives It has been reported that plant-based proteins are not as effective as animal-based proteins in their capacity to stimulate muscle protein synthesis rates. This has been attributed to the lower essential amino acid content and the selective deficiency in specific amino acids. It has been hypothesized that a blend of different plant-based proteins may complement each other and, as such, compensate for such deficits. This study compares post-prandial muscle protein synthesis rates following the ingestion of 30 g milk protein with the ingestion of a 30 g blend of wheat, corn, and pea protein in vivo, in healthy young males. Methods In a randomized, double blind, parallel-group design, 24 healthy young males (24 ± 4 y) received a primed continuous infusion of L-[ring-13C6]-phenylalanine and ingested 30 g milk protein (MILK), or a 30 g protein blend with 15 g wheat, 7.5 g corn, and 7.5 g pea protein (PLANT) in beverage form (n = 12 per group). Both interventional drinks were matched for leucine content. Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. Data are expressed as mean ± SD. Results MILK increased plasma essential amino acid concentrations ∼2 fold more than PLANT over the 5 h post-prandial period (incremental area under curve (iAUC): 151 ± 31 vs 79 ± 12 mmol∙5 h∙L−1 respectively;  P &lt; 0.001). Similarly, the leucine iAUC was ∼16% greater for MILK vs PLANT (36 ± 7 vs 31 ± 4 mmol∙5 h∙L−1 respectively; P &lt; 0.05). Ingestion of both MILK and PLANT increased myofibrillar protein synthesis rates when compared to basal post-absorptive values (P &lt; 0.001), with no significant differences between treatments (0.053 ± 0.013 vs 0.064 ± 0.016%∙h−1,  respectively; P &gt; 0.05). Conclusions Ingestion of 30 g of a wheat, corn, and pea protein blend increases muscle protein synthesis rates in healthy, young males. The post-prandial muscle protein synthetic response to the ingestion of 30 g of a wheat, corn and pea protein blend does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Funding Sources TiFN


2011 ◽  
Vol 300 (1) ◽  
pp. E231-E242 ◽  
Author(s):  
Søren Reitelseder ◽  
Jakob Agergaard ◽  
Simon Doessing ◽  
Ida C. Helmark ◽  
Peter Lund ◽  
...  

Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials ( n = 9) or one control trial ( n = 8). Infusion of l-[1-13C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-13C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1–6 h postexercise after whey and casein intake, both of which were higher compared with control ( P < 0.05). Phosphorylation of Akt and p70S6K was increased after exercise and protein intake ( P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake ( P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 651-651
Author(s):  
Philippe J M Pinckaers ◽  
Michelle E G Weijzen ◽  
Lisanne H P Houben ◽  
Antoine H Zorenc ◽  
Imre W K Kouw ◽  
...  

Abstract Objectives The muscle protein synthetic response to the ingestion of animal based proteins has been reported to be superior to the ingestion of plant based proteins. The lesser anabolic properties of plant based compared with animal based proteins has been attributed to differences in essential amino acid (EAA) contents and amino acid composition. This study compares post-prandial muscle protein synthesis rates following the ingestion of 30 g milk protein with the ingestion of 30 g corn protein or a blend of 30 g corn and milk protein in vivo, in young males. Methods In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received a primed continuous infusion of L-[ring-13C6]-phenylalanine and ingested 30 g milk protein (MILK), 30 g corn protein (CORN), or a blend of 15 g corn protein plus 15 g milk protein (CORN + MILK) (n = 12 per group). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. Data were analyzed with 2-way repeated measures ANOVA and independent samples t-test. Data are expressed as mean ± SD. Results MILK increased plasma EAA concentrations more when compared to CORN (incremental area under curve (iAUC): 151 ± 31 vs 77 ± 19 mmol/L/300 min, respectively; P &lt; 0.001). Both milk and corn protein ingestion increased myofibrillar protein synthesis rates (P &lt; 0.001), with no differences between MILK and CORN (from 0.014 ± 0.014 to 0.053 ± 0.013 and from 0.017 ± 0.011 to 0.052 ± 0.013%/h, respectively; time*treatment P = 0.661). When MILK was compared to CORN + MILK, the iAUC for plasma EAA concentrations increased more in MILK when compared to CORN + MILK (151 ± 31 vs 126 ± 24 mmol/L/300 min, respectively; P = 0.036). Corn plus milk protein ingestion also increased myofibrillar protein synthesis rates (from 0.015 ± 0.015 to 0.052 ± 0.024%/h; P &lt; 0.001), with no differences between MILK and CORN + MILK (time*treatment P = 0.823). Conclusions Ingestion of 30 g milk protein, 30 g corn protein, or a blend of 15 g corn plus 15 g milk protein increases muscle protein synthesis rates in vivo in young males. Post-prandial muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g corn protein or a blend providing 15 g milk plus 15 g corn protein in vivo, in young males. Funding Sources TiFN.


1989 ◽  
Vol 77 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Peter J. Garlick ◽  
Jan Wernerman ◽  
Margaret A. McNurlan ◽  
Pia Essen ◽  
Gerald E. Lobley ◽  
...  

1. The ‘flooding dose’ technique for measuring the rate of protein synthesis in tissues in vivo involves the injection of a large amount of unlabelled amino acid together with the tracer to minimize differences in isotopic enrichment of the free amino acid in plasma and tissue compartments. This approach has been investigated in human muscle by taking biopsies from postabsorptive male volunteers given [1-13C]leucine. 2. Intravenous injection of 4 g of unlabelled leucine resulted in a rapid rise in free leucine concentration of seven- to eleven-fold in plasma and five-fold in muscle. Values were still elevated by two-fold after 2 h. 3. Five minutes after injection of [1-13C]leucine (0.05 g/kg) the isotopic enrichment of plasma leucine was 82% that of the injected material, falling to 44% at 120 min. The enrichment of free leucine in sequential muscle biopsies was close to that in plasma and almost identical to that for plasma α-ketoisocaproate. 4. The rate of protein synthesis was determined from the increase in leucine enrichment in protein of muscle biopsies taken before and 90 min after injection of [1-13C]leucine (0.05 g/kg; 19 or 39 atom% excess) and the average plasma α-ketoisocaproate enrichment over this period (taken to represent muscle free leucine). The mean rate of muscle protein synthesis in 10 subjects was 1.95 (sem 0.12)%/day. Rates of protein synthesis calculated from plasma leucine as precursor enrichment were only 5% lower than those calculated from plasma α-ketoisocaproate. 5. It is concluded that a ‘flooding dose’ of 13C-labelled amino acid is a useful and convenient technique for determining the rate of protein synthesis in tissues of human volunteers and patients.


2019 ◽  
Vol 149 (9) ◽  
pp. 1533-1542 ◽  
Author(s):  
Imre W K Kouw ◽  
Jan Willem van Dijk ◽  
Astrid M H Horstman ◽  
Irene Fleur Kramer ◽  
Joy P B Goessens ◽  
...  

ABSTRACT Background Excess lipid availability has been associated with the development of anabolic resistance. As such, obesity may be accompanied by impairments in muscle protein metabolism. Objective We hypothesized that basal and postprandial muscle protein synthesis rates are lower in obese than in lean men. Methods Twelve obese men [mean ± SEM age: 48 ± 2 y; BMI (in kg/m2): 37.0 ± 1.5; body fat: 32 ± 2%] and 12 age-matched lean controls (age: 43 ± 3 y; BMI: 23.4 ± 0.4; body fat: 21 ± 1%) received primed continuous L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine infusions and ingested 25 g intrinsically L-[1-13C]-phenylalanine labeled whey protein. Repeated blood and muscle samples were obtained to assess protein digestion and amino acid absorption kinetics, and basal and postprandial myofibrillar protein synthesis rates. Results Exogenous phenylalanine appearance rates increased after protein ingestion in both groups (P < 0.001), with a total of 53 ± 1% and 53 ± 2% of dietary protein–derived phenylalanine appearing in the circulation over the 5-h postprandial period in lean and obese men, respectively (P = 0.82). After protein ingestion, whole-body protein synthesis and oxidation rates increased to a greater extent in lean men than in the obese (P-interaction < 0.05), resulting in a higher whole-body protein net balance in the lean than in the obese (7.1 ± 0.2 and 4.6 ± 0.4 µmol phenylalanine · h−1 · kg−1, respectively; P-interaction < 0.001). Myofibrillar protein synthesis rates increased from 0.030 ± 0.002 and 0.028 ± 0.003%/h in the postabsorptive period to 0.034 ± 0.002 and 0.035 ± 0.003%.h−1 in the 5-h postprandial period (P = 0.03) in lean and obese men, respectively, with no differences between groups (P-interaction = 0.58). Conclusions Basal, postabsorptive myofibrillar protein synthesis rates do not differ between lean and obese middle-aged men. Postprandial protein handling, including protein digestion and amino acid absorption, and the postprandial muscle protein synthetic response after the ingestion of 25 g whey protein are not impaired in obese men. This trial was registered at www.trialregister.nl as NTR4060.


Sign in / Sign up

Export Citation Format

Share Document