protein ingestion
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 43)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Vol 46 ◽  
pp. S556-S557
Author(s):  
F.K. Hendriks ◽  
J.H. Kuijpers ◽  
J.M. van Kranenburg ◽  
F.M. van der Sande ◽  
J.P. Kooman ◽  
...  

Author(s):  
Tom P Aird ◽  
Andrew J Farquharson ◽  
Kate M Bermingham ◽  
Aifric O'Sullivan ◽  
Janice E Drew ◽  
...  

Sprint interval training (SIT) is a time efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterised, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short term SIT in the fasted state with pre-exercise hydrolysed (WPH) or concentrate (WPC) whey protein supplementation. In healthy males, pre-exercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPC and WPH beneficially altered acute exercise-induced SIRT4 and CD36 mRNA expression, respectively. Pre-exercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation, and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater pre-exercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 weeks of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was favourably regulated in WPH conditions following training. Such findings suggest pre-exercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared to fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.


2021 ◽  
Vol 53 (8S) ◽  
pp. 387-387
Author(s):  
Floris K. Hendriks ◽  
Joey S.J. Smeets ◽  
Janneau M.X. van Kranenburg ◽  
Natascha J.H. Broers ◽  
Frank M. van der Sande ◽  
...  
Keyword(s):  

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 215-LB
Author(s):  
MARIA S. RAYAS ◽  
HENRI HONKA ◽  
RALPH A. DEFRONZO ◽  
AMALIA GASTALDELLI ◽  
MARZIEH SALEHI

2021 ◽  
Vol 31 (3) ◽  
pp. 217-226 ◽  
Author(s):  
Andrew M. Holwerda ◽  
Jorn Trommelen ◽  
Imre W.K. Kouw ◽  
Joan M. Senden ◽  
Joy P.B. Goessens ◽  
...  

Protein ingestion and exercise stimulate myofibrillar protein synthesis rates. When combined, exercise further increases the postprandial rise in myofibrillar protein synthesis rates. It remains unclear whether protein ingestion with or without exercise also stimulates muscle connective tissue protein synthesis rates. The authors assessed the impact of presleep protein ingestion on overnight muscle connective tissue protein synthesis rates at rest and during recovery from resistance-type exercise in older men. Thirty-six healthy, older men were randomly assigned to ingest 40 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine-labeled casein protein (PRO, n = 12) or a nonprotein placebo (PLA, n = 12) before going to sleep. A third group performed a single bout of resistance-type exercise in the evening before ingesting 40 g intrinsically-labeled casein protein prior to sleep (EX+PRO, n = 12). Continuous intravenous infusions of L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine were applied with blood and muscle tissue samples collected throughout overnight sleep. Presleep protein ingestion did not increase muscle connective tissue protein synthesis rates (0.049 ± 0.013 vs. 0.060 ± 0.024%/hr in PLA and PRO, respectively; p = .73). Exercise plus protein ingestion resulted in greater overnight muscle connective tissue protein synthesis rates (0.095 ± 0.022%/hr) when compared with PLA and PRO (p < .01). Exercise increased the incorporation of dietary protein-derived amino acids into muscle connective tissue protein (0.036 ± 0.013 vs. 0.054 ± 0.009 mole percent excess in PRO vs. EX+PRO, respectively; p < .01). In conclusion, resistance-type exercise plus presleep protein ingestion increases overnight muscle connective tissue protein synthesis rates in older men. Exercise enhances the utilization of dietary protein-derived amino acids as precursors for de novo muscle connective tissue protein synthesis during overnight sleep.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1291
Author(s):  
Jeffrey A. Rothschild ◽  
Andrew E. Kilding ◽  
Sophie C. Broome ◽  
Tom Stewart ◽  
John B. Cronin ◽  
...  

Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kohei Watanabe ◽  
Aleš Holobar ◽  
Kenji Uchida ◽  
Yukiko Mita

Purpose: Nutritional supplementation in conjunction with exercise is of interest for the prevention or improvement of declines in motor performances in older adults. An understanding of the effects on both young and older adults contributes to its effective application. We investigated the effect of fish protein ingestion with resistance training on neural and muscular adaptations in young adults using interventions and assessments that have already been tested in older adults.Methods: Eighteen young adults underwent 8 weeks of isometric knee extension training. During the intervention, nine participants ingested 5 g of fish protein (n = 9, Alaska pollack protein, APP), and the other nine participants ingested casein as a control (n = 9, CAS) in addition to daily meals. Before, during, and after the intervention, the isometric knee extension force, lower extremity muscle mass, and motor unit firing pattern of knee extensor muscles were measured.Results: Maximum voluntary contraction (MVC) was significantly increased in both APP and CAS groups from 0 weeks to 4, 6, and 8 weeks of intervention (p &lt; 0.001), but there were no significant differences between the groups (p = 0.546–0.931). Muscle mass was not significantly changed during the intervention in either group (p = 0.250–0.698). Significant changes in motor unit firing rates (p = 0.02 and 0.029 for motor units recruited at 20–40% of MVC and at 40–60%) were observed following the intervention in the APP but not CAS (p = 0.120–0.751) group.Conclusions: These results suggest that dietary fish protein ingestion changes motor unit adaptations following resistance training in young adults.


Sign in / Sign up

Export Citation Format

Share Document