Modification of the transglucosylation properties of α-glucosidases from Aspergillus oryzae and Aspergillus sojae via a single critical amino acid replacement

Author(s):  
Atsushi Kawano ◽  
Yuji Matsumoto ◽  
Atsushi Terada ◽  
Takashi Tonozuka ◽  
Sawaki Tada ◽  
...  

Abstract We constructed enzyme variants of the α-glucosidases from Aspergillus oryzae (AoryAgdS) and Aspergillus sojae (AsojAgdL) by mutating the amino acid residue at position 450. AoryAgdS_H450R acquired the ability to produce considerable amounts of α-1,6-transglucosylation products, whereas AsojAgdL_R450H changed to produce more α-1,3- and α-1,4-transglucosylation products than α-1,6-products. The 450th amino acid residue is critical for the transglucosylation of these α-glucosidases.

FEBS Letters ◽  
1995 ◽  
Vol 371 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Yuji Saito ◽  
Yasuo Nemoto ◽  
Toshimasa Ishizaki ◽  
Naoki Watanabe ◽  
Narito Morii ◽  
...  

1997 ◽  
Vol 78 (05) ◽  
pp. 1419-1420 ◽  
Author(s):  
Tetsuo Ozawa ◽  
Kenji Niiya ◽  
Naoko Ejiri ◽  
Nobuo Sakuragawa

1987 ◽  
Vol 262 (8) ◽  
pp. 3754-3761
Author(s):  
A.J. Ganzhorn ◽  
D.W. Green ◽  
A.D. Hershey ◽  
R.M. Gould ◽  
B.V. Plapp

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 445-458 ◽  
Author(s):  
Nick Goldman ◽  
Jeffrey L Thorne ◽  
David T Jones

Abstract Empirically derived models of amino acid replacement are employed to study the association between various physical features of proteins and evolution. The strengths of these associations are statistically evaluated by applying the models of protein evolution to 11 diverse sets of protein sequences. Parametric bootstrap tests indicate that the solvent accessibility status of a site has a particularly strong association with the process of amino acid replacement that it experiences. Significant association between secondary structure environment and the amino acid replacement process is also observed. Careful description of the length distribution of secondary structure elements and of the organization of secondary structure and solvent accessibility along a protein did not always significantly improve the fit of the evolutionary models to the data sets that were analyzed. As indicated by the strength of the association of both solvent accessibility and secondary structure with amino acid replacement, the process of protein evolution—both above and below the species level—will not be well understood until the physical constraints that affect protein evolution are identified and characterized.


Author(s):  
Nadya V. Pletneva ◽  
Eugene G. Maksimov ◽  
Elena A. Protasova ◽  
Anastasia V. Mamontova ◽  
Tatiana R. Simonyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document