Heterogeneous information network and its application to human health and disease

2019 ◽  
Vol 21 (4) ◽  
pp. 1327-1346 ◽  
Author(s):  
Pingjian Ding ◽  
Wenjue Ouyang ◽  
Jiawei Luo ◽  
Chee-Keong Kwoh

Abstract The molecular components with the functional interdependencies in human cell form complicated biological network. Diseases are mostly caused by the perturbations of the composite of the interaction multi-biomolecules, rather than an abnormality of a single biomolecule. Furthermore, new biological functions and processes could be revealed by discovering novel biological entity relationships. Hence, more and more biologists focus on studying the complex biological system instead of the individual biological components. The emergence of heterogeneous information network (HIN) offers a promising way to systematically explore complicated and heterogeneous relationships between various molecules for apparently distinct phenotypes. In this review, we first present the basic definition of HIN and the biological system considered as a complex HIN. Then, we discuss the topological properties of HIN and how these can be applied to detect network motif and functional module. Afterwards, methodologies of discovering relationships between disease and biomolecule are presented. Useful insights on how HIN aids in drug development and explores human interactome are provided. Finally, we analyze the challenges and opportunities for uncovering combinatorial patterns among pharmacogenomics and cell-type detection based on single-cell genomic data.

2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1671
Author(s):  
Jibing Gong ◽  
Cheng Wang ◽  
Zhiyong Zhao ◽  
Xinghao Zhang

In MOOCs, generally speaking, curriculum designing, course selection, and knowledge concept recommendation are the three major steps that systematically instruct users to learn. This paper focuses on the knowledge concept recommendation in MOOCs, which recommends related topics to users to facilitate their online study. The existing approaches only consider the historical behaviors of users, but ignore various kinds of auxiliary information, which are also critical for user embedding. In addition, traditional recommendation models only consider the immediate user response to the recommended items, and do not explicitly consider the long-term interests of users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept recommendation model with a heterogeneous information network. We first clarify the concept recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic knowledge concept label list to users. To consider more auxiliary information of users, we construct a heterogeneous information network among users, courses, and concepts, and use a meta-path-based method which can automatically identify useful meta-paths and multi-hop connections to learn a new graph structure for learning effective node representations on a graph. Comprehensive experiments and analyses on a real-world dataset collected from XuetangX show that our proposed model outperforms some state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document