scholarly journals Anti-Müllerian hormone production in the ovary: a comparative study in bovine and porcine granulosa cells†

2020 ◽  
Vol 103 (3) ◽  
pp. 572-582 ◽  
Author(s):  
Anthony Estienne ◽  
Peggy Jarrier ◽  
Christophe Staub ◽  
Eric Venturi ◽  
Yves Le Vern ◽  
...  

Abstract In this study, we aimed to determine the origin of the difference, in terms of anti-Müllerian hormone production, existing between the bovine and porcine ovaries. We first confirmed by quantitative real-time-Polymerase-Chain Reaction, ELISA assay and immunohistochemistry that anti-Müllerian hormone mRNA and protein production are very low in porcine ovarian growing follicles compared to bovine ones. We then have transfected porcine and bovine granulosa cells with vectors containing the luciferase gene driven by the porcine or the bovine anti-Müllerian hormone promoter. These transfection experiments showed that the porcine anti-Müllerian hormone promoter is less active and less responsive to bone morphogenetic protein stimulations than the bovine promoter in both porcine and bovine cells. Moreover, bovine but not porcine granulosa cells were responsive to bone morphogenetic protein stimulation after transfection of a plasmidic construction including a strong response element to the bone morphogenetic proteins (12 repetitions of the GCCG sequence) upstream of the luciferase reporter gene. We also showed that SMAD6, an inhibitor of the SMAD1-5-8 pathway, is strongly expressed in porcine compared to the bovine granulosa cells. Overall, these results suggest that the low expression of anti-Müllerian hormone in porcine growing follicles is due to both a lack of activity/sensitivity of the porcine anti-Müllerian hormone promoter, and to the lack of responsiveness of porcine granulosa cells to bone morphogenetic protein signaling, potentially due to an overexpression of SMAD6 compared to bovine granulosa cells. We propose that the low levels of anti-Müllerian hormone in the pig would explain the poly-ovulatory phenotype in this species.

2021 ◽  
Author(s):  
Long Bai ◽  
Hsun-Ming Chang ◽  
Yi-Min Zhu ◽  
Peter CK Leung

Abstract Background: Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated.Methods: In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway.Results: Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway.Conclusions: Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.


2014 ◽  
Vol 29 (5) ◽  
pp. 728-736 ◽  
Author(s):  
Giuliana Muzio ◽  
Germana Martinasso ◽  
Francesco Baino ◽  
Roberto Frairia ◽  
Chiara Vitale-Brovarone ◽  
...  

In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine.


2018 ◽  
Vol 37 (11) ◽  
pp. 878-887 ◽  
Author(s):  
Yilong Yao ◽  
Jiaqiang Niu ◽  
Suolang Sizhu ◽  
Bojiang Li ◽  
Yun Chen ◽  
...  

Author(s):  
Yasuhiro Nakano ◽  
Toru Hasegawa ◽  
Chiaki Kashino ◽  
Nahoko Iwata ◽  
Koichiro Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document