Role of autocrine bone morphogenetic protein Signaling in trophoblast stem cells

Author(s):  
Jennie Au ◽  
Daniela F Requena ◽  
Hannah Rishik ◽  
Sampada Kallol ◽  
Chandana Tekkatte ◽  
...  

Abstract The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.

2021 ◽  
Author(s):  
Victoria Karakis ◽  
Thomas McDonald ◽  
Abigail Cordiner ◽  
Adam Mischler ◽  
Adriana San Miguel ◽  
...  

AbstractHuman trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we do not utilize transforming growth factor-beta inhibitors or a passage step for EVT differentiation, or forskolin for STB formation. Strikingly, under these conditions, presence of a single additional extracellular cue – lam-inin-1 – switched the terminal differentiation of hTSCs from STB to the EVT lineage. Activation of the sphingosine-1 receptor 3 receptor (S1PR3) using a chemical agonist could drive EVT differentiation of hTSCs in the absence of exogenous laminin, albeit less efficiently. To illustrate the utility of a chemically defined culture system for mechanistic studies, we examined the role of protein kinase C (PKC) signaling during hTSC differentiation to the EVT lineage. Inhibition of PKCα/β signaling significantly reduced HLA-G expression and the formation of HLA-G+ mesen-chymal EVTs during hTSC differentiation mediated by laminin exposure; however, it did not prevent commitment to the EVT lineage or STB differentiation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation, and will enable mechanistic studies in vitro.SignificanceDespite its importance to a healthy pregnancy, early human placental development remains poorly understood. Mechanistic studies are impeded by restrictions on research with human embryos and fetal tissues, and significant differences in placentation between humans and commonly used animal models. In this context, human trophoblast stem cells (hTSCs) have emerged as attractive in vitro models for the epithelial cytotrophoblast of the early gestation human placenta. Here we describe chemically defined culture conditions for differentiation of hTSCs to the two major differentiated cell types – extravillous trophoblast and syncytiotrophoblast. These culture conditions enable in vitro studies to reveal molecular mechanisms regulating hTSC differentiation.


2021 ◽  
Author(s):  
Ruth Hornbachner ◽  
Andreas Lackner ◽  
Sandra Haider ◽  
Martin Knöfler ◽  
Karl Mechtler ◽  
...  

AbstractThe majority of placental pathologies are associated with failures in trophoblast differentiation, yet the underlying transcriptional regulation is poorly understood. Here, we use human trophoblast stem cells to elucidate the function of the transcription factor MSX2 in trophoblast specification. We show that depletion of MSX2 de-represses the syncytiotrophoblast program, while forced expression of MSX2 blocks it. We demonstrate that a large proportion of the affected genes are directly bound and regulated by MSX2 and identify components of the SWI/SNF complex as its strong interactors. Our findings uncover the pivotal role of MSX2 in cell fate decisions that govern human placental development and function.


2020 ◽  
Vol 8 (3) ◽  
pp. 95-100
Author(s):  
Rafał Sibiak ◽  
Michał Jaworski ◽  
Saoirse Barrett ◽  
Rut Bryl ◽  
Paweł Gutaj ◽  
...  

AbstractThe placenta is a part of feto-maternal unit that develops from the maternal decidua basalis and fetal-derived trophoblast cells. The regulation of its early development is extremely intricate, albeit the elusive trophoblast stem cells (TSCs) are thought to give rise to the fetal part of the placenta. TSCs may be isolated in both animal and human models. In detail, TSCs can be efficiently obtained from the early conceptus tissues – blastocysts or early placental tissue. The isolation of murine TSCs pave the way for analyses of human trophoblast cell lineages. Both human and animal stem cells retain similar characteristic properties – the ability for unrestricted self-renewal and differentiation into all trophoblast cell lines. Nevertheless, there are some essential differences across the various species which are especially pronounced when pertaining to their distinct optimal cell culture requirements. Moreover, there are several crucial discrepancies in the stemness marker gene transcription profiles between human and murine TSCs models. In vitro TSC models can be adapted to the elucidation of the pathophysiology of various reproductive complications. For instance, their properties may illustrate the conditions observed during the implantation or simulate the state of abnormal placentation. Observations gained from the experimental studies could potentially explain the cause of some cases of infertility, preeclampsia, and fetal growth abnormalities.Running title: Update on the trophoblast stem cells


Placenta ◽  
2017 ◽  
Vol 60 ◽  
pp. S57-S60 ◽  
Author(s):  
Ching-Wen Chang ◽  
Mana M. Parast

2020 ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Michael G. Meyer ◽  
Gregory J. Wiepz ◽  
Lindsey N. Block ◽  
Brittany M. Dusek ◽  
...  

AbstractNonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSC) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first trimester placental villous cytotrophoblasts followed by culture in TSC medium to “reprogram” the cells to a proliferative state. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was >4,000-fold higher in ST culture media compared to TSC media. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and macaque placental nonclassical MHC class I molecule, Mamu-AG. TSC differentiation to extravillous trophoblasts (EVTs) with or without the ALK-5 inhibitor A83-01 resulted in differing morphologies but similar expression of Mamu-AG and CD56 as assessed by flow cytometry, hence further refinement of relevant EVT markers is needed. Our preliminary characterization of macaque TSCs suggests that these cells represent a proliferative, self-renewing TSC population capable of differentiating to STs in vitro thereby establishing an experimental model of primate placentation.


2018 ◽  
Vol 10 (4) ◽  
pp. 1355-1368 ◽  
Author(s):  
Stephanie Chrysanthou ◽  
Claire E. Senner ◽  
Laura Woods ◽  
Elena Fineberg ◽  
Hanneke Okkenhaug ◽  
...  

2019 ◽  
Vol 28 (12) ◽  
pp. 1686-1699 ◽  
Author(s):  
Chongfeng Chen ◽  
Yujia Yang ◽  
Yue Yao

Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic encephalopathy (HIE). However, the therapeutic effects of HBO and its associated mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone morphogenetic protein (BMP) play important roles in mammalian nervous system development. The present study examined whether HBO stimulates the differentiation of neural stem cells (NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with the advantage of reducing the number of astrocytes. These effects were most pronounced when these two were combined together. In addition, the expression of Wnt3a, BMP2, and β-catenin nuclear proteins were increased after HBO treatment. However, blockade of Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve as a potential therapeutic strategy for treating HIE.


Sign in / Sign up

Export Citation Format

Share Document