Uterine epithelial expression of the tumor necrosis factor superfamily: a strategy for immune privilege during pregnancy in a true epitheliochorial placentation species

2020 ◽  
Vol 102 (4) ◽  
pp. 828-842 ◽  
Author(s):  
Inkyu Yoo ◽  
Yoon Chul Kye ◽  
Jisoo Han ◽  
Minjeong Kim ◽  
Soohyung Lee ◽  
...  

Abstract The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.

1995 ◽  
Vol 15 (1) ◽  
pp. 71-80 ◽  
Author(s):  
CATHERINE FADY ◽  
AGNES GARDNER ◽  
FREDDIE JACOBY ◽  
KENNETH BRISKIN ◽  
YIPING TU ◽  
...  

1996 ◽  
Vol 227 (1) ◽  
pp. 266-272 ◽  
Author(s):  
Hong Cao ◽  
Jeffery Mattison ◽  
Yi Zhao ◽  
Nicole Joki ◽  
Michael Grasso ◽  
...  

2000 ◽  
Vol 20 (15) ◽  
pp. 5503-5515 ◽  
Author(s):  
Aristides G. Eliopoulos ◽  
Clare Davies ◽  
Pauline G. Knox ◽  
Neil J. Gallagher ◽  
Simon C. Afford ◽  
...  

ABSTRACT CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.


Sign in / Sign up

Export Citation Format

Share Document