Involvement of tumor necrosis factor (TNF-α) in arsenic trioxide induced apoptotic cell death of murine myeloid leukemia cells

2002 ◽  
Vol 135 (1-2) ◽  
pp. 79-87 ◽  
Author(s):  
N.K Mak ◽  
R.N.S Wong ◽  
K.N Leung ◽  
M.C Fung
2020 ◽  
Vol 102 (4) ◽  
pp. 828-842 ◽  
Author(s):  
Inkyu Yoo ◽  
Yoon Chul Kye ◽  
Jisoo Han ◽  
Minjeong Kim ◽  
Soohyung Lee ◽  
...  

Abstract The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.


1995 ◽  
Vol 15 (1) ◽  
pp. 71-80 ◽  
Author(s):  
CATHERINE FADY ◽  
AGNES GARDNER ◽  
FREDDIE JACOBY ◽  
KENNETH BRISKIN ◽  
YIPING TU ◽  
...  

1996 ◽  
Vol 227 (1) ◽  
pp. 266-272 ◽  
Author(s):  
Hong Cao ◽  
Jeffery Mattison ◽  
Yi Zhao ◽  
Nicole Joki ◽  
Michael Grasso ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3648-3657 ◽  
Author(s):  
Shujie Wang ◽  
Zhiliang Wang ◽  
Paul Dent ◽  
Steven Grant

Interactions between the protein kinase C (PKC) activator/down-regulator bryostatin 1 and paclitaxel have been examined in human myeloid leukemia cells (U937) and in highly paclitaxel-resistant cells ectopically expressing a Bcl-2 phosphorylation loop–deleted protein (ΔBcl-2). Treatment (24 hours) of wild-type cells with paclitaxel (eg, 5 to 20 nM) in combination with 10 nM bryostatin 1 induced a marked increase in mitochondrial damage (eg, cytochrome c and Smac/DIABLO [second mitochondria-derived activator of caspases/direct IAP binding protein with low pI] release), caspase activation, Bid cleavage, and apoptosis; moreover, bryostatin 1 circumvented the block to paclitaxel-induced mitochondrial injury and apoptosis conferred by ectopic expression of the loop-deleted protein. Coadministration of tumor necrosis factor (TNF) soluble receptors, or ectopic expression of CrmA or dominant-negative caspase-8, abrogated potentiation of paclitaxel-induced mitochondrial injury and apoptosis by bryostatin 1, implicating the extrinsic apoptotic pathway in this process. Similar events occurred in HL-60 leukemia cells. Potentiation of paclitaxel-induced apoptosis in wild-type and mutant cells by bryostatin 1 was associated with increases in TNF-α mRNA and protein and was mimicked by exogenous TNF-α. Coadministration of the selective PKC inhibitor GFX (1 μM) blocked the increase in TNF-α mRNA levels and apoptosis in bryostatin 1/paclitaxel–treated cells. Lastly, synchronization of cells in G2M increased their sensitivity to TNF-α–associated lethality. Collectively, these findings indicate that in U937 cells, bryostatin 1 promotes paclitaxel-mediated mitochondrial injury and apoptosis, and circumvents resistance to cell death conferred by loss of the Bcl-2 phosphorylation domain, through the PKC-dependent induction of TNF-α. They further suggest that this process is amplified by paclitaxel-mediated arrest of cells in G2M, where they are more susceptible to TNF-α–induced lethality.


Sign in / Sign up

Export Citation Format

Share Document