scholarly journals Homology-based enzymatic DNA fragment assembly-based illumina sequencing library preparation

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Hiroshi Shinozuka ◽  
Shimna Sudheesh ◽  
Maiko Shinozuka ◽  
Noel O I Cogan

Abstract The current Illumina HiSeq and MiSeq platforms can generate paired-end reads of up to 2 x 250 bp and 2 x 300 bp in length, respectively. These read lengths may be substantially longer than genomic regions of interest when a DNA sequencing library is prepared through a target enrichment-based approach. A sequencing library preparation method has been developed based on the homology-based enzymatic DNA fragment assembly scheme to allow processing of multiple PCR products within a single read. Target sequences were amplified using locus-specific PCR primers with 8 bp tags, and using the tags, homology-based enzymatic DNA assembly was performed with DNA polymerase, T7 exonuclease and T4 DNA ligase. Short PCR amplicons can hence be assembled into a single molecule, along with sequencing adapters specific to the Illumina platforms. As a proof-of-concept experiment, short PCR amplicons (57–66 bp in length) derived from genomic DNA templates of field pea and containing variable nucleotide locations were assembled and sequenced on the MiSeq platform. The results were validated with other genotyping methods. When 5 PCR amplicons were assembled, 4.3 targeted sequences (single-nucleotide polymorphisms) on average were successfully identified within each read. The utility of this for sequencing of short fragments has consequently been demonstrated.

2016 ◽  
Vol 7 (2) ◽  
pp. 58-70 ◽  
Author(s):  
Youcef Gheraibia ◽  
Abdelouahab Moussaoui ◽  
Sohag Kabir ◽  
Smaine Mazouzi

DNA Fragment Assembly (DFA) is a process of finding the best order and orientation of a set of DNA fragments to reconstruct the original DNA sequence from them. As it has to consider all possible combinations among the DNA fragments, it is considered as a combinatorial optimisation problem. This paper presents a method showing the use of Penguins Search Optimisation Algorithm (PeSOA) for DNA fragment assembly problem. Penguins search optimisation is a nature inspired metaheuristic algorithm based on the collaborative hunting strategy of penguins. The approach starts its operation by generating a set of random population. After that, the population is divided into several groups, and each group contains a set of active fragments in which the penguins concentrate on the search process. The search process of the penguin optimisation algorithm is controlled by the oxygen reserve of penguins. During the search process each penguin shares its best found solution with other penguins to quickly converge to the global optimum. In this paper, the authors adapted the original PeSOA algorithm to obtain a new algorithm structure for DNA assembly problem. The effectiveness of the proposed approach has been verified by applying it on the well-known benchmarks for the DNA assembly problem. The results show that the proposed method performed well compared to the most used DNA fragment assembly methods.


10.26524/jap2 ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 10-16
Author(s):  
Satyanarayana Reddy Beeram ◽  
Edara Srinivasa Reddy

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Milda Mickutė ◽  
Kotryna Kvederavičiūtė ◽  
Aleksandr Osipenko ◽  
Raminta Mineikaitė ◽  
Saulius Klimašauskas ◽  
...  

Abstract Background Targeted installation of designer chemical moieties on biopolymers provides an orthogonal means for their visualisation, manipulation and sequence analysis. Although high-throughput RNA sequencing is a widely used method for transcriptome analysis, certain steps, such as 3′ adapter ligation in strand-specific RNA sequencing, remain challenging due to structure- and sequence-related biases introduced by RNA ligases, leading to misrepresentation of particular RNA species. Here, we remedy this limitation by adapting two RNA 2′-O-methyltransferases from the Hen1 family for orthogonal chemo-enzymatic click tethering of a 3′ sequencing adapter that supports cDNA production by reverse transcription of the tagged RNA. Results We showed that the ssRNA-specific DmHen1 and dsRNA-specific AtHEN1 can be used to efficiently append an oligonucleotide adapter to the 3′ end of target RNA for sequencing library preparation. Using this new chemo-enzymatic approach, we identified miRNAs and prokaryotic small non-coding sRNAs in probiotic Lactobacillus casei BL23. We found that compared to a reference conventional RNA library preparation, methyltransferase-Directed Orthogonal Tagging and RNA sequencing, mDOT-seq, avoids misdetection of unspecific highly-structured RNA species, thus providing better accuracy in identifying the groups of transcripts analysed. Our results suggest that mDOT-seq has the potential to advance analysis of eukaryotic and prokaryotic ssRNAs. Conclusions Our findings provide a valuable resource for studies of the RNA-centred regulatory networks in Lactobacilli and pave the way to developing novel transcriptome and epitranscriptome profiling approaches in vitro and inside living cells. As RNA methyltransferases share the structure of the AdoMet-binding domain and several specific cofactor binding features, the basic principles of our approach could be easily translated to other AdoMet-dependent enzymes for the development of modification-specific RNA-seq techniques.


2021 ◽  
Author(s):  
Charles J. Vaske ◽  
Chris Troll ◽  
Camille Schwartz ◽  
Colin Naughton ◽  
Abdullah Mahmood Ali ◽  
...  

Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 754-773 ◽  
Author(s):  
Guillermo Mallén-Fullerton ◽  
J. Quiroz-Ibarra ◽  
Antonio Miranda ◽  
Guillermo Fernández-Anaya

Sign in / Sign up

Export Citation Format

Share Document