illumina hiseq
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 424)

H-INDEX

19
(FIVE YEARS 7)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Cécilia Légaré ◽  
Andrée-Anne Clément ◽  
Véronique Desgagné ◽  
Kathrine Thibeault ◽  
Frédérique White ◽  
...  

Abstract Background During pregnancy, maternal metabolism undergoes substantial changes to support the developing fetus. Such changes are finely regulated by different mechanisms carried out by effectors such as microRNAs (miRNAs). These small non-coding RNAs regulate numerous biological functions, mostly through post-transcriptional repression of gene expression. miRNAs are also secreted in circulation by numerous organs, such as the placenta. However, the complete plasmatic microtranscriptome of pregnant women has still not been fully described, although some miRNA clusters from the chromosome 14 (C14MC) and the chromosome 19 (C19MC and miR-371-3 cluster) have been proposed as being specific to pregnancy. Our aims were thus to describe the plasma microtranscriptome during the first trimester of pregnancy, by assessing the differences with non-pregnant women, and how it varies between the 4th and the 16th week of pregnancy. Methods Plasmatic miRNAs from 436 pregnant (gestational week 4 to 16) and 15 non-pregnant women were quantified using Illumina HiSeq next-generation sequencing platform. Differentially abundant miRNAs were identified using DESeq2 package (FDR q-value ≤ 0.05) and their targeted biological pathways were assessed with DIANA-miRpath. Results A total of 2101 miRNAs were detected, of which 191 were differentially abundant (fold change < 0.05 or > 2, FDR q-value ≤ 0.05) between pregnant and non-pregnant women. Of these, 100 miRNAs were less and 91 miRNAs were more abundant in pregnant women. Additionally, the abundance of 57 miRNAs varied according to gestational age at first trimester, of which 47 were positively and 10 were negatively associated with advancing gestational age. miRNAs from the C19MC were positively associated with both pregnancy and gestational age variation during the first trimester. Biological pathway analysis revealed that these 191 (pregnancy-specific) and 57 (gestational age markers) miRNAs targeted genes involved in fatty acid metabolism, ECM-receptor interaction and TGF-beta signaling pathways. Conclusion We have identified circulating miRNAs specific to pregnancy and/or that varied with gestational age in first trimester. These miRNAs target biological pathways involved in lipid metabolism as well as placenta and embryo development, suggesting a contribution to the maternal metabolic adaptation to pregnancy and fetal growth.


Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hanli Dang ◽  
Tao Zhang ◽  
Yuanyuan Li ◽  
Guifang Li ◽  
Li Zhuang ◽  
...  

Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p &lt; 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p &lt; 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p &lt; 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.


2022 ◽  
Vol 79 (2) ◽  
Author(s):  
Jianjun Shan ◽  
Xiaoqing Tian ◽  
Chongwu Guan ◽  
Chenglin Zhang ◽  
Yulei Zhang ◽  
...  

AbstractThe study aimed to evaluate the safety of copper ion sterilization based on copper ion residues in zebrafish (Brachydanio rerio), as well as bacterial community structure and diversity in recirculating aquaculture systems (RASs). The copper ion content was determined using national food safety standard GB 5009.13-2017. Bacterial community structures and alpha and beta diversity indexes were examined using the 16S rRNA gene sequences produced by Illumina HiSeq sequencing. The results revealed no significant copper ion enrichment in B. rerio when the copper ion concentration was 0.15 mg/L. The relative abundances of Erythrobacter, nitrite bacteria, and Flavanobacteria were clearly higher in the treatment group than in the control and differences in bacterial species richness and diversity were obvious. In addition, there was no sharp decrease in the microflora at the outflow of the copper ion generator. In conjunction with the changes in ammonia nitrogen, nitrate, and nitrite concentrations during the experiment, the results indicated that there were no significant effects on the purification efficacy of the biological filter, but the abundances of beneficial bacteria increased significantly. This is of great relevance in order to understand the response of bacterial communities affected by changing environmental conditions, such as copper ion sterilization.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niu Yu ◽  
Haixi Sun ◽  
Jinchang Yang ◽  
Rongsheng Li

Sindora glabra is an economically important tree that produces abundant oleoresin in the trunk. Here, we present a high-quality chromosome-scale assembly of S. glabra genome by combining Illumina HiSeq, Pacific Biosciences sequencing, and Hi-C technologies. The size of S. glabra genome was 1.11 Gb, with a contig N50 of 1.27 Mb and 31,944 predicted genes. This is the first sequenced genome of the subfamily Caesalpinioideae. As a sister taxon to Papilionoideae, S. glabra underwent an ancient genome triplication shared by core eudicots and further whole-genome duplication shared by early-legume in the last 73.3 million years. S. glabra harbors specific genes and expanded genes largely involved in stress responses and biosynthesis of secondary metabolites. Moreover, 59 terpene backbone biosynthesis genes and 64 terpene synthase genes were identified, which together with co-expressed transcription factors could contribute to the diversity and specificity of terpene compounds and high terpene content in S. glabra stem. In addition, 63 disease resistance NBS-LRR genes were found to be unique in S. glabra genome and their expression levels were correlated with the accumulation of terpene profiles, suggesting potential defense function of terpenes in S. glabra. These together provide new resources for understanding genome evolution and oleoresin production.


2021 ◽  
Author(s):  
Hongmei Guo ◽  
Wei Zhang ◽  
Guangqi Liu ◽  
Tingxiang Chang ◽  
Hanming Gu

Abstract miRNAs contain suppressive and oncogenic properties to regulate the progression of cancers. The expression of miR-125b expression is reported to be consistently low in breast cancers. However, the function and mechanism of miR-125b are not fully understood in breast cancers. In our study, our objective is to identify the DEGs and biological processes in the miR-125b mediated breast cancer cells by analyzing the RNA-seq data. The GSE123358 dataset was produced by the Illumina HiSeq 2000 (Homo sapiens). The KEGG and GO analyses showed the mitochondria and endoplasmic reticulum oxidative phosphorylation pathways are the main processes in miR-125b mediated breast cancer. Moreover, we identified ten interactive molecules including UQCRQ, CALR, HNRNPU, ATP5G1, NDUFB11, UQCRH, HSP90B1, TGOLN2, SAP18, and XPOT. Thus, our study may benefit the treatment of breast cancer by using miR-125b.


2021 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Micael F. M. Gonçalves ◽  
Sandra Hilário ◽  
Yves Van de Peer ◽  
Ana C. Esteves ◽  
Artur Alves

The genus Emericellopsis is found in terrestrial, but mainly in marine, environments with a worldwide distribution. Although Emericellopsis has been recognized as an important source of bioactive compounds, the range of metabolites expressed by the species of this genus, as well as the genes involved in their production are still poorly known. Untargeted metabolomics, using UPLC- QToF–MS/MS, and genome sequencing (Illumina HiSeq) was performed to unlock E. cladophorae MUM 19.33 chemical diversity. The genome of E. cladophorae is 26.9 Mb and encodes 8572 genes. A large set of genes encoding carbohydrate-active enzymes (CAZymes), secreted proteins, transporters, and secondary metabolite biosynthetic gene clusters were identified. Our analysis also revealed genomic signatures that may reflect a certain fungal adaptability to the marine environment, such as genes encoding for (1) the high-osmolarity glycerol pathway; (2) osmolytes’ biosynthetic processes; (3) ion transport systems, and (4) CAZymes classes allowing the utilization of marine polysaccharides. The fungal crude extract library constructed revealed a promising source of antifungal (e.g., 9,12,13-Trihydroxyoctadec-10-enoic acid, hymeglusin), antibacterial (e.g., NovobiocinA), anticancer (e.g., daunomycinone, isoreserpin, flavopiridol), and anti-inflammatory (e.g., 2’-O-Galloylhyperin) metabolites. We also detected unknown compounds with no structural match in the databases used. The metabolites’ profiles of E. cladophorae MUM 19.33 fermentations were salt dependent. The results of this study contribute to unravel aspects of the biology and ecology of this marine fungus. The genome and metabolome data are relevant for future biotechnological exploitation of the species.


2021 ◽  
Author(s):  
Ying Wang ◽  
Cheng Wan ◽  
Leijia Li ◽  
Zhun Xiang ◽  
Jihong Wang ◽  
...  

Abstract Fine varieties of the Yunwu Tribute Tea (Camellia Sinensis (L.) Kuntze var. niaowangensis Q. H. Chen) are distributed on the Yunwu Mountain, Guiding County, Guizhou province, China. Cold stress usually occurs in winter and is one of the most significant environmental factors restricting the growth of this plant as well as its geographical distribution. However, only few systematic studies have examined the molecular mechanism of cold tolerance in the Yunwu Tribute Tea. Hence, in this study, Illumina HiSeq technology was applied to investigate the cold-tolerance mechanism and for this purpose, cDNA libraries were obtained from two groups of samples namely, the cold-treated group (DW) and the control group (CK). A total of 185,973 unigenes were produced from 511,987 assembled transcripts and among these, 16,020 differentially expressed genes (DEGs) (corrected p-value <0.01, |log2(fold change)| >3), including 9,606 upregulated and 6,414 downregulated genes, were obtained. Moreover, the antioxidant enzyme system, plant hormone signal transduction, proline metabolism, tyrosine metabolism pathway, and transcription factors were analyzed and based on the results, a series of candidate genes related to cold stress were screened out and discussed. The physiological indexes related to the low temperature response were tested, along with five DEGs which were validated by quantitative real-time PCR. For this study, it is expected that the results of the transcriptome sequence of Yunwu Tribute Tea will provide valuable clues for genetic studies while helping to screen candidate genes for cold-resistance breeding in tea plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Wang ◽  
Yan Wang ◽  
Zhen-Yu Wang ◽  
Han Wu ◽  
Cai-Yue Mei ◽  
...  

This study aimed to investigate the prevalence of fosfomycin fosA7 in Salmonella enterica isolates from food animals and retail meat products in China and the impact of fosA7 on bacterial fitness. A total of 360 Salmonella isolates collected from 11 provinces and cities in China were detected for fosA7. All fosA7-positive Salmonella isolates were determined minimum inhibitory concentrations (MICs) and sequenced by Illumina Hiseq. The fosA7 gene of S. Derby isolate HA2-WA5 was knocked out. The full length of fosA7 was cloned into vector pBR322 and then transformed into various hosts. MICs of fosfomycin, growth curves, stability, and fitness of fosA7 were evaluated. The fosA7 gene was identified in S. Derby (ST40, n = 30) and S. Reading (ST1628, n = 5). MICs to fosfomycin of 35 fosA7-positive isolates were 1 to 32 mg/L. All fosA7 were located on chromosomes of Salmonella. The deletion of fosA7 in HA2-WA5 decreased fosfomycin MIC by 16-fold and slightly affected its fitness. The acquisition of plasmid-borne fosA7 enhanced MICs of fosfomycin in Salmonella (1,024-fold) and Escherichia coli (16-fold). The recombinant plasmid pBR322-fosA7 was stable in Salmonella Typhimurium, S. Pullorum, S. Derby, and E. coli, except for Salmonella Enteritidis, and barely affected on the growth of them but significantly increased biological fitness in Salmonella. The spread of specific Salmonella serovars such as S. Derby ST40 will facilitate the dissemination of fosA7. fosA7 can confer high-level fosfomycin resistance and enhance bacterial fitness in Salmonella if transferred on plasmids; thus, it has the potential to be a reservoir of the mobilized fosfomycin resistance gene.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260514
Author(s):  
Asep Gunawan ◽  
Kasita Listyarini ◽  
Ratna Sholatia Harahap ◽  
Jakaria ◽  
Katrin Roosita ◽  
...  

Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value <0.05. Among them, 100 genes were up-regulated, and 98 were down-regulated (p<0.01, FC>1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program.


Sign in / Sign up

Export Citation Format

Share Document