scholarly journals A simulation-approximation approach to sample size planning for high-dimensional classification studies

Biostatistics ◽  
2009 ◽  
Vol 10 (3) ◽  
pp. 424-435 ◽  
Author(s):  
P. de Valpine ◽  
H.-M. Bitter ◽  
M. P. S. Brown ◽  
J. Heller
Psychometrika ◽  
2021 ◽  
Author(s):  
Gwowen Shieh

A Correction to this paper has been published: https://doi.org/10.1007/s11336-019-09692-3


Biometrika ◽  
2020 ◽  
Author(s):  
Oliver Dukes ◽  
Stijn Vansteelandt

Summary Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators, such as the lasso, or other regularization approaches. Naïve use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with the sample size, correctly specifying a model for the outcome is nontrivial. In this article we deal with both of these concerns simultaneously, obtaining confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.


2021 ◽  
Author(s):  
Xin Chen ◽  
Qingrun Zhang ◽  
Thierry Chekouo

Abstract Background: DNA methylations in critical regions are highly involved in cancer pathogenesis and drug response. However, to identify causal methylations out of a large number of potential polymorphic DNA methylation sites is challenging. This high-dimensional data brings two obstacles: first, many established statistical models are not scalable to so many features; second, multiple-test and overfitting become serious. To this end, a method to quickly filter candidate sites to narrow down targets for downstream analyses is urgently needed. Methods: BACkPAy is a pre-screening Bayesian approach to detect biological meaningful clusters of potential differential methylation levels with small sample size. BACkPAy prioritizes potentially important biomarkers by the Bayesian false discovery rate (FDR) approach. It filters non-informative sites (i.e. non-differential) with flat methylation pattern levels accross experimental conditions. In this work, we applied BACkPAy to a genome-wide methylation dataset with 3 tissue types and each type contains 3 gastric cancer samples. We also applied LIMMA (Linear Models for Microarray and RNA-Seq Data) to compare its results with what we achieved by BACkPAy. Then, Cox proportional hazards regression models were utilized to visualize prognostics significant markers with The Cancer Genome Atlas (TCGA) data for survival analysis. Results: Using BACkPAy, we identified 8 biological meaningful clusters/groups of differential probes from the DNA methylation dataset. Using TCGA data, we also identified five prognostic genes (i.e. predictive to the progression of gastric cancer) that contain some differential methylation probes, whereas no significant results was identified using the Benjamin-Hochberg FDR in LIMMA. Conclusions: We showed the importance of using BACkPAy for the analysis of DNA methylation data with extremely small sample size in gastric cancer. We revealed that RDH13, CLDN11, TMTC1, UCHL1 and FOXP2 can serve as predictive biomarkers for gastric cancer treatment and the promoter methylation level of these five genes in serum could have prognostic and diagnostic functions in gastric cancer patients.


Sign in / Sign up

Export Citation Format

Share Document