sparse logistic regression
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 15 (2) ◽  
pp. 171-179
Author(s):  
Pang Du ◽  
Yunnan Xu ◽  
John Robertson ◽  
Ryan Senger

Test ◽  
2021 ◽  
Author(s):  
Ana M. Bianco ◽  
Graciela Boente ◽  
Gonzalo Chebi

Author(s):  
G. S. Monti ◽  
P. Filzmoser

AbstractWe introduce the Robust Logistic Zero-Sum Regression (RobLZS) estimator, which can be used for a two-class problem with high-dimensional compositional covariates. Since the log-contrast model is employed, the estimator is able to do feature selection among the compositional parts. The proposed method attains robustness by minimizing a trimmed sum of deviances. A comparison of the performance of the RobLZS estimator with a non-robust counterpart and with other sparse logistic regression estimators is conducted via Monte Carlo simulation studies. Two microbiome data applications are considered to investigate the stability of the estimators to the presence of outliers. Robust Logistic Zero-Sum Regression is available as an R package that can be downloaded at https://github.com/giannamonti/RobZS.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhengshan Dong ◽  
Geng Lin ◽  
Niandong Chen

The penalty decomposition method is an effective and versatile method for sparse optimization and has been successfully applied to solve compressed sensing, sparse logistic regression, sparse inverse covariance selection, low rank minimization, image restoration, and so on. With increase in the penalty parameters, a sequence of penalty subproblems required being solved by the penalty decomposition method may be time consuming. In this paper, an acceleration of the penalty decomposition method is proposed for the sparse optimization problem. For each penalty parameter, this method just finds some inexact solutions to those subproblems. Computational experiments on a number of test instances demonstrate the effectiveness and efficiency of the proposed method in accurately generating sparse and redundant representations of one-dimensional random signals.


2021 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
Heena Tyagi ◽  
Emma Daulton ◽  
Ayman S. Bannaga ◽  
Ramesh P. Arasaradnam ◽  
James A. Covington

This study outlines the use of an electronic nose as a method for the detection of VOCs as biomarkers of bladder cancer. Here, an AlphaMOS FOX 4000 electronic nose was used for the analysis of urine samples from 15 bladder cancer and 41 non-cancerous patients. The FOX 4000 consists of 18 MOS sensors that were used to differentiate the two groups. The results obtained were analysed using s MultiSens Analyzer and RStudio. The results showed a high separation with sensitivity and specificity of 0.93 and 0.88, respectively, using a Sparse Logistic Regression and 0.93 and 0.76 using a Random Forest classifier. We conclude that the electronic nose shows potential for discriminating bladder cancer from non-cancer subjects using urine samples.


Sign in / Sign up

Export Citation Format

Share Document