The Macroptilium gracile species complex (Fabaceae, Papilionoideae): an integrative taxonomic study based on morphological, molecular and ecological data

2020 ◽  
Vol 194 (1) ◽  
pp. 118-139
Author(s):  
Chiara Berlingeri ◽  
Manuel B Crespo ◽  
Teodardo Calles

Abstract Macroptilium gracile (Phaseolinae, Fabaceae) sensu lato is an extremely diverse species distributed from Mexico to Argentina. The taxonomic and nomenclatural history of the species is confusing, due to existing contrasting treatments. All 15 names corresponding to 12 taxa that have often been considered akin to M. gracile were selected here to clarify the identity of this taxonomic aggregate, using morphological, molecular and biogeographical analyses. Univariate and multivariate statistical analyses (nMDS and cluster) of 67 morphological traits were performed on a sample of 109 herbarium sheets. Maximum parsimony and Bayesian inference analyses were conducted using plastid (rpl32-trnL(UAG), trnK-matK-trnK) and nuclear (ITS/5.8S) DNA sequence data on a sample of 31 accessions belonging to taxa of the M. gracile complex and other Macroptilium spp., using three members of related genera (Phaseolus and Vigna) as outgroups. A database with plant locations per taxa was used to elaborate a distribution map, and the potential habitats were estimated through nMDS analysis. Our morphological, molecular and biogeographic results suggest that members of the M. gracile complex belong to three taxonomic entities, for which a new arrangement is proposed accepting Macroptilium gracile (with two varieties) and M. campestre, including two new nomenclatural combinations (M. gracile var. subcoriaceum and M. campestre). Types for all cited names are indicated where available (with a new lectotype designation). Morphological, ecological and distributional data are reported for each accepted taxon.

2005 ◽  
Vol 95 (6) ◽  
pp. 505-516 ◽  
Author(s):  
D. Navia ◽  
G.J. de Moraes ◽  
G. Roderick ◽  
M. Navajas

AbstractOver the past 30 years the coconut mite Aceria guerreronis Keifer has emerged as one of the most important pests of coconut and has recently spread to most coconut production areas worldwide. The mite has not been recorded in the Indo-Pacific region, the area of origin of coconut, suggesting that it has infested coconut only recently. To investigate the geographical origin, ancestral host associations, and colonization history of the mite, DNA sequence data from two mitochondrial and one nuclear region were obtained from samples of 29 populations from the Americas, Africa and the Indo-ocean region. Mitochondrial DNA 16S ribosomal sequences were most diverse in Brazil, which contained six of a total of seven haplotypes. A single haplotype was shared by non-American mites. Patterns of nuclear ribosomal internal transcribed spacer (ITS) variation were similar, again with the highest nucleotide diversity found in Brazil. These results suggest an American origin of the mite and lend evidence to a previous hypothesis that the original host of the mite is a non-coconut palm. In contrast to the diversity in the Americas, all samples from Africa and Asia were identical or very similar, consistent with the hypothesis that the mite invaded these regions recently from a common source. Although the invasion routes of this mite are still only partially reconstructed, the study rules out coconut as the ancestral host of A. guerreronis, thus prompting a reassessment of efforts using quarantine and biological control to check the spread of the pest.


Author(s):  
Sara Fuentes-Soriano ◽  
Elizabeth A. Kellogg

Physarieae is a small tribe of herbaceous annual and woody perennial mustards that are mostly endemic to North America, with its members including a large amount of variation in floral, fruit, and chromosomal variation. Building on a previous study of Physarieae based on morphology and ndhF plastid DNA, we reconstructed the evolutionary history of the tribe using new sequence data from two nuclear markers, and compared the new topologies against previously published cpDNA-based phylogenetic hypotheses. The novel analyses included ca. 420 new sequences of ITS and LUMINIDEPENDENS (LD) markers for 39 and 47 species, respectively, with sampling accounting for all seven genera of Physarieae, including nomenclatural type species, and 11 outgroup taxa. Maximum parsimony, maximum likelihood, and Bayesian analyses showed that these additional markers were largely consistent with the previous ndhF data that supported the monophyly of Physarieae and resolved two major clades within the tribe, i.e., DDNLS (Dithyrea, Dimorphocarpa, Nerisyrenia, Lyrocarpa, and Synthlipsis)and PP (Paysonia and Physaria). New analyses also increased internal resolution for some closely related species and lineages within both clades. The monophyly of Dithyrea and the sister relationship of Paysonia to Physaria was consistent in all trees, with the sister relationship of Nerisyrenia to Lyrocarpa supported by ndhF and ITS, and the positions of Dimorphocarpa and Synthlipsis shifted within the DDNLS Clade depending on the employed data set. Finally, using the strong, new phylogenetic framework of combined cpDNA + nDNA data, we discussed standing hypotheses of trichome evolution in the tribe suggested by ndhF.


2018 ◽  
Vol 32 (6) ◽  
pp. 1316 ◽  
Author(s):  
Jahnavi Joshi ◽  
Gregory D. Edgecombe

Integrative taxonomy assesses the congruence between different lines of evidence for delimiting species, such as morphological, molecular or ecological data. Herein molecular phylogenetics is used to test monophyly and determine the phylogenetic position of the Old World tropical centipede genus Ethmostigmus Pocock, 1898, and to define species boundaries for Ethmostigmus in peninsular India. A phylogeny of the family Scolopendridae based on DNA sequence data for three markers from 427 specimens sampling in all major lineages (144 individuals generated in this study) recovers Ethmostigmus as a monophyletic group, but relationships among the genera in its subfamily Otostigminae are poorly supported. Two species delimitation methods for DNA sequence data and phylogeny are integrated with morphology and geographic data to propose a well-supported species hypothesis for Ethmostigmus on the peninsular Indian plate. Five species of Ethmostigmus are recognised in peninsular India, of which E. coonooranus Chamberlin, 1920 and three new species, namely, E. agasthyamalaiensis, sp. nov., E. sahyadrensis, sp. nov. and E. praveeni, sp. nov., occur in the Western Ghats, a biodiversity hotspot. The lesser-known Eastern Ghats harbour one species, E. tristis (Meinert, 1886), which has been nearly unreported for 130 years. This study highlights the value of an integrative approach to systematics, especially in underexplored, high biodiversity regions and where morphological variation is limited among closely related species.


2019 ◽  
Author(s):  
Daria Koscinski ◽  
Paul Handford ◽  
Pablo L. Tubaro ◽  
Peiwen Li ◽  
Stephen C. Lougheed

ABSTRACTThe tropical and subtropical Andes have among the highest levels of biodiversity in the world. Understanding the forces that underlie speciation and diversification in the Andes is a major focus of research. Here we tested two hypotheses of species origins in the Andes: 1. Vicariance mediated by orogenesis or shifting habitat distribution. 2. Parapatric diversification along elevational environmental gradients. We also sought insights on the factors that impacted the phylogeography of co-distributed taxa, and the influences of divergent species ecology on population genetic structure. We used phylogeographic and coalescent analyses of nuclear and mitochondrial DNA sequence data to compare genetic diversity and evolutionary history of two frog species: Pleurodema borellii (Family: Leiuperidae, 130 individuals; 20 sites), and Hypsiboas riojanus (Family: Hyllidae, 258 individuals; 23 sites) across their shared range in northwestern Argentina. The two showed concordant phylogeographic structuring, and our analyses support the vicariance model over the elevational gradient model. However, Pleurodema borellii exhibited markedly deeper temporal divergence (≥4 Ma) than H. riojanus (1-2 Ma). The three main mtDNA lineages of P. borellii were nearly allopatric and diverged between 4-10 Ma. At similar spatial scales, differentiation was less in the putatively more habitat-specialized H. riojanus than in the more generalist P. borellii. Similar allopatric distributions of major lineages for both species implies common causes of historical range fragmentation and vicariance. However, different divergence times among clades presumably reflect different demographic histories, permeability of different historical barriers at different times, and/or difference in life history attributes and sensitivities to historical environmental change. Our research enriches our understanding of the phylogeography of the Andes in northwestern Argentina.


2014 ◽  
Vol 62 (3) ◽  
pp. 235 ◽  
Author(s):  
S. Safaei Chaei Kar ◽  
F. Ghanavati ◽  
M. R. Naghavi ◽  
H. Amirabadi-zade ◽  
R. Rabiee

Onobrychis, comprising more than 130 species, is a genus of the family Fabaceae. At this time, the interspecies relationship of this biologically important genus is still a subject of great discussion and debate. To help resolve this disagreement, we used molecular phylogeny to analyse internal transcribed spacer (ITS) and trnL–trnF sequences of 76 species of Onobrychis. Bayesian interference, maximum parsimony and maximum likelihood analyses of nuclear ITS and plastid trnL–trnF DNA sequence data generated trees with strong posterior probability for two groups: Onobrychis subgen. Sisyrosema (including: Heliobrychis, Hymenobrychis, Afghanicae and Anthyllium sections) along with Laxiflorae section in Group I and Onobrychis subgen. Onobrychis (except Laxiflorae section) in the other (Group II). The Laxiflorae section roots back to the ancestral node for Sisyrosema subgen. O. viciifolia (cultivated species), which is closely associated with O. cyri var. cyri, suggesting that the latter may be a wild progenitor of O. viciifolia. The present study supported the paraphyly of subgenera Onobrychis and Sisyrosema. The study proposed the paraphyletic nature of the sections Onobrychis, Dendrobrychis, Heliobrychis and Hymenobrychis. Together with our molecular phylogenetic analyses we present a review of Onobrychis morphology and discuss and compare our results with those of earlier morphological and molecular phylogenetic analyses.


Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 1972-1975 ◽  
Author(s):  
Shaoyuan Wu ◽  
Scott Edwards ◽  
Liang Liu

2011 ◽  
Vol 23 (3) ◽  
pp. 211-224 ◽  
Author(s):  
G.C. Grobler ◽  
A.D.S. Bastos ◽  
A.M. Treasure ◽  
S.L. Chown

AbstractThe biogeography of the South Indian Ocean Province (SIP) biotas has long been controversial. Much of the discussion has been based on interpretation of species distributions, based on morphological or anatomical delimitations. However, molecular phylogenetic approaches elsewhere have recently shown that interpretations based solely on morphological data may be misleading. Nonetheless, few studies have employed molecular phylogenetic approaches to understand the biogeography of the SIP biotas. We do so here for theEctemnorhinusgroup of genera, a monophyletic unit of weevils endemic to the region. We use mitochondrial cytochrome oxidase I DNA sequence data to reconstruct relationships among 13 species and 22 populations in the generaPalirhoeus,BothrometopusandEctemnorhinus. On the basis of this analysis we find little support for separating the genusPalirhoeusfromBothrometopus, and little support for the morphologically-based species groups currently recognized withinBothrometopus. Using a molecular clock we show that dispersal among islands probably took place against the prevailing wind direction. These data also support a previous hypothesis of radiation of the epilithic generaBothrometopusandPalirhoeusduring the Pliocene/early Pleistocene, but reject the hypothesis that the genusEctemnorhinusradiated following the last glacial maximum. We show thatBothrometopus parvulus(C.O. Waterhouse) on the Prince Edward Islands comprises two species that are not sister taxa. We name the second speciesBothrometopus huntleyin. sp. and provide a description thereof.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e16751 ◽  
Author(s):  
Adam C. Silver ◽  
David Williams ◽  
Joshua Faucher ◽  
Amy J. Horneman ◽  
J. Peter Gogarten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document