scholarly journals Phylogeography of two Andean frogs: Test of vicariance versus elevational gradient models of diversification

2019 ◽  
Author(s):  
Daria Koscinski ◽  
Paul Handford ◽  
Pablo L. Tubaro ◽  
Peiwen Li ◽  
Stephen C. Lougheed

ABSTRACTThe tropical and subtropical Andes have among the highest levels of biodiversity in the world. Understanding the forces that underlie speciation and diversification in the Andes is a major focus of research. Here we tested two hypotheses of species origins in the Andes: 1. Vicariance mediated by orogenesis or shifting habitat distribution. 2. Parapatric diversification along elevational environmental gradients. We also sought insights on the factors that impacted the phylogeography of co-distributed taxa, and the influences of divergent species ecology on population genetic structure. We used phylogeographic and coalescent analyses of nuclear and mitochondrial DNA sequence data to compare genetic diversity and evolutionary history of two frog species: Pleurodema borellii (Family: Leiuperidae, 130 individuals; 20 sites), and Hypsiboas riojanus (Family: Hyllidae, 258 individuals; 23 sites) across their shared range in northwestern Argentina. The two showed concordant phylogeographic structuring, and our analyses support the vicariance model over the elevational gradient model. However, Pleurodema borellii exhibited markedly deeper temporal divergence (≥4 Ma) than H. riojanus (1-2 Ma). The three main mtDNA lineages of P. borellii were nearly allopatric and diverged between 4-10 Ma. At similar spatial scales, differentiation was less in the putatively more habitat-specialized H. riojanus than in the more generalist P. borellii. Similar allopatric distributions of major lineages for both species implies common causes of historical range fragmentation and vicariance. However, different divergence times among clades presumably reflect different demographic histories, permeability of different historical barriers at different times, and/or difference in life history attributes and sensitivities to historical environmental change. Our research enriches our understanding of the phylogeography of the Andes in northwestern Argentina.

Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 1972-1975 ◽  
Author(s):  
Shaoyuan Wu ◽  
Scott Edwards ◽  
Liang Liu

2005 ◽  
Vol 95 (6) ◽  
pp. 505-516 ◽  
Author(s):  
D. Navia ◽  
G.J. de Moraes ◽  
G. Roderick ◽  
M. Navajas

AbstractOver the past 30 years the coconut mite Aceria guerreronis Keifer has emerged as one of the most important pests of coconut and has recently spread to most coconut production areas worldwide. The mite has not been recorded in the Indo-Pacific region, the area of origin of coconut, suggesting that it has infested coconut only recently. To investigate the geographical origin, ancestral host associations, and colonization history of the mite, DNA sequence data from two mitochondrial and one nuclear region were obtained from samples of 29 populations from the Americas, Africa and the Indo-ocean region. Mitochondrial DNA 16S ribosomal sequences were most diverse in Brazil, which contained six of a total of seven haplotypes. A single haplotype was shared by non-American mites. Patterns of nuclear ribosomal internal transcribed spacer (ITS) variation were similar, again with the highest nucleotide diversity found in Brazil. These results suggest an American origin of the mite and lend evidence to a previous hypothesis that the original host of the mite is a non-coconut palm. In contrast to the diversity in the Americas, all samples from Africa and Asia were identical or very similar, consistent with the hypothesis that the mite invaded these regions recently from a common source. Although the invasion routes of this mite are still only partially reconstructed, the study rules out coconut as the ancestral host of A. guerreronis, thus prompting a reassessment of efforts using quarantine and biological control to check the spread of the pest.


Phytotaxa ◽  
2013 ◽  
Vol 152 (1) ◽  
pp. 59
Author(s):  
Karol Marhold ◽  
Petr Sklenář

Lasiocephalus Willd. ex Schlechtendal (1818: 308), as traditionally circumscribed (e.g., by Cuatrecasas 1978, Dušková et al. 2010), is a neotropical genus of ca 25 species confined to the Andes and distributed from Venezuela to Bolivia. Nevertheless, recent studies by Pelser et al. (2007, 2010) have shown that based on phylogenetic analyses of nrITS and plastid DNA sequence data, species of the genus Lasiocephalus are deeply embedded in Senecio Linnaeus (1753: 866), and, consequently, should be transferred into this latter genus. In fact, a number of species of Lasiocephalus were originally described as Senecio or had been, at some point, transferred into Senecio so only few transfers are necessary.


Zootaxa ◽  
2020 ◽  
Vol 4895 (3) ◽  
pp. 357-380
Author(s):  
OMAR TORRES-CARVAJAL ◽  
JUAN C. SÁNCHEZ-NIVICELA ◽  
VALENTINA POSSE ◽  
ELVIS CELI ◽  
CLAUDIA KOCH

Leptodeira is one of the most widespread and taxonomically problematic snake taxa in the Americas. Here we describe a new species of Leptodeira from the Andes of southern Ecuador based on morphological and molecular data. The new species is geographically close and morphologically similar to L. ornata and L. larcorum, from which it can be distinguished by having smaller dorsal body blotches, a longer tail, and shorter spines on the hemipenial body. The shortest genetic distances between the new species and its congeners are 0.02 (16S), 0.05 (cytb), and 0.18 (ND4). The new species is restricted to the Jubones River Basin in southern Ecuador, an area of endemism for other reptile species. Our phylogenetic analysis based on mitochondrial and nuclear DNA sequence data also supports recognition of the names L. larcorum (restricted to Peru) for “L. septentrionalis larcorum”, and L. ornata for populations of “L. s. ornata” from central and eastern Panama, western Colombia, and western Ecuador. However, some samples of “L. s. ornata” from Panama and Costa Rica, as well as the new species described herein, are not included within or more closely related to L. ornata, which is sister to the clade (L. bakeri, L. ashmeadii). 


2011 ◽  
Vol 23 (3) ◽  
pp. 211-224 ◽  
Author(s):  
G.C. Grobler ◽  
A.D.S. Bastos ◽  
A.M. Treasure ◽  
S.L. Chown

AbstractThe biogeography of the South Indian Ocean Province (SIP) biotas has long been controversial. Much of the discussion has been based on interpretation of species distributions, based on morphological or anatomical delimitations. However, molecular phylogenetic approaches elsewhere have recently shown that interpretations based solely on morphological data may be misleading. Nonetheless, few studies have employed molecular phylogenetic approaches to understand the biogeography of the SIP biotas. We do so here for theEctemnorhinusgroup of genera, a monophyletic unit of weevils endemic to the region. We use mitochondrial cytochrome oxidase I DNA sequence data to reconstruct relationships among 13 species and 22 populations in the generaPalirhoeus,BothrometopusandEctemnorhinus. On the basis of this analysis we find little support for separating the genusPalirhoeusfromBothrometopus, and little support for the morphologically-based species groups currently recognized withinBothrometopus. Using a molecular clock we show that dispersal among islands probably took place against the prevailing wind direction. These data also support a previous hypothesis of radiation of the epilithic generaBothrometopusandPalirhoeusduring the Pliocene/early Pleistocene, but reject the hypothesis that the genusEctemnorhinusradiated following the last glacial maximum. We show thatBothrometopus parvulus(C.O. Waterhouse) on the Prince Edward Islands comprises two species that are not sister taxa. We name the second speciesBothrometopus huntleyin. sp. and provide a description thereof.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e16751 ◽  
Author(s):  
Adam C. Silver ◽  
David Williams ◽  
Joshua Faucher ◽  
Amy J. Horneman ◽  
J. Peter Gogarten ◽  
...  

1995 ◽  
Vol 73 (S1) ◽  
pp. 677-683 ◽  
Author(s):  
Mary L. Berbee ◽  
John W. Taylor

From ribosomal DNA sequence data we can estimate ascomycete relationships, the time of divergence of major ascomycete lineages, and the history of morphological evolutionary change. Groups long accepted by mycologists such as the filamentous ascomycetes with fruiting bodies, (the plectomycetes and pyrenomycetes) are supported by 18S rDNA sequence data. After generating a phylogenetic tree showing relationships, the geological time of divergence of major fungal lineages may be estimated, inferring elapsed time using the calibrated percent substitutions between sequences. Determining the pathway of evolution of morphological characters is more difficult than inferring the relationships among these taxa. To establish the history of morphological evolution, we need accurate trees receiving strong support from our data set. We also need taxa with the intermediate characters to reveal the sequence of events in morphological evolution. Soon, however, we may be able to take a more direct approach to evolution of morphological characters, sequencing the genes that code for the character. Key words: fungus evolution, ascomycete phylogeny.


2006 ◽  
Vol 31 (3) ◽  
pp. 560-570 ◽  
Author(s):  
Mike Thiv ◽  
Mats Thulin ◽  
Norbert Kilian ◽  
H. Peter Linder

We investigated the colonization of the Indian Ocean archipelago of Socotra through phylogenetic analysis of Aerva (Amaranthaceae) based on nuclear and plastid DNA sequence data. The biogeographic history of the genus was tracked using ancestral area reconstructions and molecular dating. Three independent colonization lineages from the Eritreo-Arabian subregion of the Sudano-Zambesian Region were revealed: one endemic clade comprising Aerva revoluta / A. microphylla and once within A. lanata and A. javanica. Our results provide further support for the dominance of Eritreo-Arabian affinities in the flora of Socotra, in contrast to more rare affinities to Madagascar, the Mascarenes, southern Africa, and tropical Asia. Our data point towards colonization via dispersal, rather than a vicariance origin of the island elements. The overall biogeographic patterns of Aerva show only limited concordance with other taxonomic groups distributed on Indian Ocean islands.


2014 ◽  
Vol 104 (6) ◽  
pp. 564-574 ◽  
Author(s):  
Patrik Inderbitzin ◽  
Krishna V. Subbarao

Verticillium wilts are important vascular wilt diseases that affect many crops and ornamentals in different regions of the world. Verticillium wilts are caused by members of the ascomycete genus Verticillium, a small group of 10 species that are related to the agents of anthracnose caused by Colletotrichum species. Verticillium has a long and complicated taxonomic history with controversies about species boundaries and long overlooked cryptic species, which confused and limited our knowledge of the biology of individual species. We first review the taxonomic history of Verticillium, provide an update and explanation of the current system of classification and compile host range and geographic distribution data for individual species from internal transcribed spacer (ITS) GenBank records. Using Verticillium as an example, we show that species names are a poor vehicle for archiving and retrieving information, and that species identifications should always be backed up by DNA sequence data and DNA extracts that are made publicly available. If such a system were made a prerequisite for publication, all species identifications could be evaluated retroactively, and our knowledge of the biology of individual species would be immune from taxonomic changes, controversy and misidentification. Adoption of this system would improve quarantine practices and the management of diseases caused by various plant pathogens.


Sign in / Sign up

Export Citation Format

Share Document