scholarly journals Deficits of smooth pursuit initiation in patients with degenerative cerebellar lesions

Brain ◽  
1999 ◽  
Vol 122 (11) ◽  
pp. 2147-2158 ◽  
Author(s):  
Carsten Moschner ◽  
Trevor J. Crawford ◽  
Wolfgang Heide ◽  
Peter Trillenberg ◽  
Detlef Kömpf ◽  
...  
2006 ◽  
Vol 96 (6) ◽  
pp. 3545-3550 ◽  
Author(s):  
Anna Montagnini ◽  
Miriam Spering ◽  
Guillaume S. Masson

Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.


2019 ◽  
Vol 2 ◽  
pp. 6 ◽  
Author(s):  
Shahab Bakhtiari ◽  
Christopher C. Pack

Smooth pursuit eye movements have frequently been used to model sensorimotor transformations in the brain. In particular, the initiation phase of pursuit can be understood as a transformation of a sensory estimate of target velocity into an eye rotation. Despite careful laboratory controls on the stimulus conditions, pursuit eye movements are frequently observed to exhibit considerable trial-to-trial variability. In theory, this variability can be caused by the variability in sensory representation of target motion, or by the variability in the transformation of sensory information to motor commands. Previous work has shown that neural variability in the middle temporal (MT) area is likely propagated to the oculomotor command, and there is evidence to suggest that the magnitude of this variability is sufficient to account for the variability of pursuit initiation. This line of reasoning presumes that the MT population is homogeneous with respect to its contribution to pursuit initiation.  At the same time, there is evidence that pursuit initiation is strongly linked to a subpopulation of MT neurons (those with strong surround suppression) that collectively generate less motor variability. To distinguish between these possibilities, we have combined human psychophysics, monkey electrophysiology, and computational modeling to examine how the pursuit system reads out the MT population during pursuit initiation. We find that the psychophysical data are best accounted for by a model that gives stronger weight to surround-suppressed MT neurons, suggesting that variability in the initiation of pursuit could arise from multiple sources along the sensorimotor transformation.


1977 ◽  
Vol 86 (1) ◽  
pp. 108-114 ◽  
Author(s):  
Robert W. Baloh ◽  
Vicente Honrubia ◽  
Andrew Sills

Eye-tracking and optokinetic nystagmus (OKN) abnormalities in patients with focal lesions of the nervous system are reviewed. Patients with peripheral labyrinthine lesions can have deficits in smooth pursuit and OKN, but they are rapidly compensated after an acute lesion. By contrast, patients with large, cerebellopontine angle tumors have progressive impairment of pursuit and OKN as the tumor enlarges. Abnormalities of saccadic eye movements suggest intrinsic central nervous system (CNS) dysfunction. Saccade accuracy is severely impaired with cerebellar lesions, while brain stem disease frequently results in a slowing of saccade maximum velocity. Smooth pursuit and OKN abnormalities are common with all types of CNS lesions. The pattern of eye-tracking and OKN abnormality can be useful in anatomically localizing nervous system lesions.


2015 ◽  
Vol 114 (1) ◽  
pp. 638-649 ◽  
Author(s):  
Vincent P. Ferrera

Primates are able to track small moving visual targets using smooth pursuit eye movements. Target motion for smooth pursuit is signaled by neurons in visual cortical areas MT and MST. In this study, we trained monkeys to either initiate or withhold smooth pursuit in the presence of a moving target to test whether this decision was reflected in the relative strength of “go” and “no-go” processes. We found that the gain of the motor response depended strongly on whether monkeys were instructed to initiate or withhold pursuit, thus demonstrating voluntary control of pursuit initiation. We found that the amplitude of the neuronal response to moving targets in areas MT and MST was also significantly lower on no-go trials (by 2.1 spikes/s on average). The magnitude of the neural response reduction was small compared with the behavioral gain reduction. There were no significant differences in neuronal direction selectivity, spatial selectivity, or response reliability related to pursuit initiation or the absence thereof. Variability in eye speed was negatively correlated with firing rate variability after target motion onset during go trials but not during no-go trials, suggesting that MT and MST activity represents an error signal for a negative feedback controller. We speculate that modulation of the visual motion signals in areas MT and MST may be one of the first visual cortical events in the initiation of smooth pursuit and that the small early response modulation may be amplified to produce an all-or-none motor response by downstream areas.


2007 ◽  
Vol 181 (2) ◽  
pp. 237-247 ◽  
Author(s):  
O. Baumann ◽  
B. Ziemus ◽  
R. Luerding ◽  
G. Schuierer ◽  
U. Bogdahn ◽  
...  

2019 ◽  
Author(s):  
Stuart Behling ◽  
Stephen G. Lisberger

AbstractSmooth pursuit eye movements are used by primates to track moving objects. They are initiated by sensory estimates of target speed represented in the middle temporal (MT) area of extrastriate visual cortex and then supported by motor feedback to maintain steady-state eye speed at target speed. Here, we show that reducing the coherence in a patch of dots for a tracking target degrades the eye speed both at the initiation of pursuit and during steady-state tracking, when eye speed reaches an asymptote well below target speed. The deficits are quantitatively different between the motor-supported steady-state of pursuit and the sensory-driven initiation of pursuit, suggesting separate mechanisms. The deficit in visually-guided pursuit initiation could not explain the deficit in steady-state tracking. Pulses of target speed during steady-state tracking revealed lower sensitivities to image motion across the retina for lower values of dot coherence. However, sensitivity was not zero, implying that visual motion should still be driving eye velocity towards target velocity. When we changed dot coherence from 100% to lower values during accurate steady-state pursuit, we observed larger eye decelerations for lower coherences, as expected if motor feedback was reduced in gain. A simple pursuit model accounts for our data based on separate modulation of the strength of visual-motor transmission and motor feedback. We suggest that reduced dot coherence creates less reliable target motion that impacts pursuit initiation by changing the gain of visual-motor transmission and perturbs steady-state tracking by modulation of the motor corollary discharges that comprise eye velocity memory.


Sign in / Sign up

Export Citation Format

Share Document