scholarly journals Early stages of tau pathology and its associations with functional connectivity, atrophy and memory

Brain ◽  
2021 ◽  
Author(s):  
David Berron ◽  
Jacob W Vogel ◽  
Philip S Insel ◽  
Joana B Pereira ◽  
Long Xie ◽  
...  

Abstract In Alzheimer’s disease, postmortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 β-amyloid negative cognitively unimpaired, 81 β-amyloid positive cognitively unimpaired and 87 β-amyloid positive individuals with mild cognitive impairment, who each underwent [18]F-RO948 tau and [18]F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease-stage specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.

2019 ◽  
Vol 90 (9) ◽  
pp. 965-974 ◽  
Author(s):  
Clare Loane ◽  
Georgios P D Argyropoulos ◽  
Adriana Roca-Fernández ◽  
Carmen Lage ◽  
Fintan Sheerin ◽  
...  

ObjectiveLimbic encephalitis associated with antibodies to components of the voltage-gated potassium channel complex (VGKCC-Ab-LE) often leads to hippocampal atrophy and persistent memory impairment. Its long-term impact on regions beyond the hippocampus, and the relationship between brain damage and cognitive outcome, are poorly understood. We investigated the nature of structural and functional brain abnormalities following VGKCC-Ab-LE and its role in residual memory impairment.MethodA cross-sectional group study was conducted. Twenty-four VGKCC-Ab-LE patients (20 male, 4 female; mean (SD) age 63.86 (11.31) years) were recruited post-acutely along with age- and sex-matched healthy controls for neuropsychological assessment, structural MRI and resting-state functional MRI (rs-fMRI). Structural abnormalities were determined using volumetry and voxel-based morphometry; rs-fMRI data were analysed to investigate hippocampal functional connectivity (FC). Associations of memory performance with neuroimaging measures were examined.ResultsPatients showed selective memory impairment. Structural analyses revealed focal hippocampal atrophy within the medial temporal lobes, correlative atrophy in the mediodorsal thalamus, and additional volume reduction in the posteromedial cortex. There was no association between regional volumes and memory performance. Instead, patients demonstrated reduced posteromedial cortico-hippocampal and inter-hippocampal FC, which correlated with memory scores (r = 0.553; r = 0.582, respectively). The latter declined as a function of time since the acute illness (r = -0.531).ConclusionVGKCC-Ab-LE results in persistent isolated memory impairment. Patients have hippocampal atrophy with further reduced mediodorsal thalamic and posteromedial cortical volumes. Crucially, reduced FC of remaining hippocampal tissue correlates more closely with memory function than does regional atrophy.


Hippocampus ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Sandhitsu R. Das ◽  
John Pluta ◽  
Lauren Mancuso ◽  
Dasha Kliot ◽  
Sylvia Orozco ◽  
...  

2021 ◽  
Author(s):  
Niklas Mattsson-Carlgren ◽  
Shorena Janelidze ◽  
Randall Bateman ◽  
Ruben Smith ◽  
Erik Stomrud ◽  
...  

Abstract Alzheimer’s disease is characterized by β-amyloid plaques and tau tangles. Plasma levels of phospho-tau217 (P-tau217) accurately differentiate Alzheimer’s disease dementia from other dementias, but it is unclear to what degree this reflects β-amyloid plaque accumulation, tau tangle accumulation, or both. In a cohort with post-mortem neuropathological data (N=88), both plaque and tangle density contributed independently to higher P-tau217. Several findings were replicated in a cohort with PET imaging (“BioFINDER-2”, N=426), where β-amyloid and tau PET were independently associated to P-tau217. P-tau217 correlated with β-amyloid PET (but not tau PET) in early disease stages, and with both β-amyloid and (more strongly) tau PET in late disease stages. Finally, P-tau217 mediated the association between β-amyloid and tau in both cohorts, especially for tau outside of the medial temporal lobe. These findings support the hypothesis that plasma P-tau217 is increased by both β-amyloid plaques and tau tangles and is congruent with the hypothesis that P-tau is involved in β-amyloid-dependent formation of neocortical tau tangles.


2003 ◽  
Vol 23 (16) ◽  
pp. 6520-6528 ◽  
Author(s):  
Anthony Randal McIntosh ◽  
M. Natasha Rajah ◽  
Nancy J. Lobaugh

Neurology ◽  
2019 ◽  
Vol 93 (1) ◽  
pp. e29-e39 ◽  
Author(s):  
Val J. Lowe ◽  
Tyler J. Bruinsma ◽  
Heather J. Wiste ◽  
Hoon-Ki Min ◽  
Stephen D. Weigand ◽  
...  

ObjectiveTo assess cross-sectional associations of neurofibrillary tangles, measured by tau-PET, with cognitive performance in cognitively unimpaired (CU) adults.MethodsTau- and amyloid-PET were performed in 579 CU participants aged 50–98 from the population-based Mayo Clinic Study of Aging. Associations between tau-PET signal in 43 brain regions and cognitive test scores were assessed using penalized linear regression. In additional models, participants were classified by normal/abnormal global amyloid-PET (A+/A−) and normal/abnormal regional tau-PET (T+/T−). Regional tau-PET cutpoints were defined as standardized uptake value ratio (SUVR) greater than the 95th percentile of tau-PET SUVR in that region among 117 CU participants aged 30–49.ResultsHigher tau-PET signal was associated with poorer memory performance in all medial temporal lobe (MTL) regions and also in the middle temporal pole and frontal olfactory regions. The largest association with tau-PET and memory z scores was seen in the entorhinal cortex; this association was independent of tau-PET signal in other brain regions. Tau-PET in the entorhinal cortex was also associated with poorer global and language performance. In the entorhinal cortex, T+ was associated with lower memory performance among both A− and A+.ConclusionsTau deposition in MTL regions, as reflected by tau-PET signal, was associated with poorer performance on memory tests in CU participants. The association with entorhinal cortex tau-PET was independent of tau-PET signal in other brain regions. Longitudinal studies are needed to understand the fate of CU participants with elevated medial temporal tau-PET signal.


Author(s):  
Edward H. Bertram

Temporal lobe epilepsy, as discussed in this chapter, is a focal epilepsy that involves primarily the limbic structures of the medial temporal lobe (amygdala, hippocampus, and entorhinal cortex). In recent years animal models have been developed that mirror the pathology and pathophysiology of this disease. This chapter reviews the human condition, the structural and physiological changes that support the development of seizures. The neural circuitry of seizure initiation will be reviewed with a goal of creating a framework for developing more effective treatments for this disease.


Sign in / Sign up

Export Citation Format

Share Document