scholarly journals Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury

Brain ◽  
2008 ◽  
Vol 131 (10) ◽  
pp. 2620-2631 ◽  
Author(s):  
Rubèn López-Vales ◽  
Xavier Navarro ◽  
Takao Shimizu ◽  
Constantinos Baskakis ◽  
George Kokotos ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 7217
Author(s):  
Arthur W. English ◽  
Ken Berglund ◽  
Dario Carrasco ◽  
Katharina Goebel ◽  
Robert E. Gross ◽  
...  

Functional recovery after peripheral nerve injury (PNI) is poor, mainly due to the slow and incomplete regeneration of injured axons. Experimental therapies that increase the excitability of the injured axons have proven remarkably successful in promoting regeneration, but their clinical applicability has been limited. Bioluminescent optogenetics (BL-OG) uses luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels that could be used to increase neuronal excitability if exposed to a suitable substrate. Excitatory luminopsins were expressed in motoneurons of transgenic mice and in wildtype mice transduced with adeno-associated viral vectors. Intraperitoneal administration of coelenterazine (CTZ), a known luciferase substrate, generated intense bioluminescence in peripheral axons. This bioluminescence increased motoneuron excitability. A single administration of CTZ immediately after sciatic nerve transection and repair markedly enhanced motor axon regeneration. Compound muscle action potentials were 3–4 times larger than controls by 4 weeks after injury. The results observed with transgenic mice were comparable to those of mice in which the luminopsin was expressed using viral vectors. Significantly more motoneurons had successfully reinnervated muscle targets four weeks after nerve injury in BL-OG treated mice than in controls. Bioluminescent optogenetics is a promising therapeutic approach to enhancing axon regeneration after PNI.


Author(s):  
Eun‐Hae Jang ◽  
Yun‐Hee Bae ◽  
Eun Mo Yang ◽  
Yunho Gim ◽  
Hyun‐Jun Suh ◽  
...  

2021 ◽  
Vol 16 (6) ◽  
pp. 1078
Author(s):  
Jiasong Guo ◽  
Lixia Li ◽  
Yizhou Xu ◽  
Xianghai Wang ◽  
Jingmin Liu ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 530-536
Author(s):  
Dong-Xu Huang ◽  
Jiang-Nan Li ◽  
Ge-Yi Zhang ◽  
Wen-Gang Wang ◽  
Lei Xia ◽  
...  

Peripheral nerves have complex and precise structures that differ from other types of tissues and intrinsic regeneration abilities after injury. Spontaneous recovery is possible for neuropraxia and axonotmesis, while surgical treatment is required for neurotmesis. It remains a challenge to repair nerve gaps, a series of severe neurotmesis. It seems that 3 cm is the upper limit distance for primate peripheral nerves to regenerate spontaneously. Nerve autografts are the gold standard treatment for bridging nerve gaps. In the present review, current biomaterials for repairing gaps after peripheral nerve injury are briefly summarized. Moreover, the microstructure of the peripheral nerve, classifications of peripheral nerve injury, and the Wallerian degeneration are reviewed in the biological view and clinical practice. The failure of nerve regeneration in nerve conduits bridging longer than 3 cm gaps may be contributing to the insufficient vascularization of nerve conduit materials. Future researchers could focus on advanced biomaterials that promoting the angiogenesis of nerve conduits.


Pain ◽  
1998 ◽  
Vol 77 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Rochelle Wagner ◽  
Heidi M. Heckman ◽  
Robert R. Myers

Sign in / Sign up

Export Citation Format

Share Document