advanced biomaterials
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 45)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Zhenfeng Wang ◽  
Jiadi Lv ◽  
Pin Yu ◽  
Yajin Qu ◽  
Yabo Zhou ◽  
...  

AbstractExploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4303
Author(s):  
Oana Gherasim ◽  
Alexandru Mihai Grumezescu ◽  
Valentina Grumezescu ◽  
Ecaterina Andronescu ◽  
Irina Negut ◽  
...  

Osteoconductive and osteoinductive coatings represent attractive and tunable strategies towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells’ development, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover, the addition of osteogenic proteins represents the next step towards the fabrication of advanced biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially contribute to the new bone formation. In this respect, laser-processed composites, based on PLA, Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic implants. The nanostructured coatings proved superior ability to promote the adhesion, viability, and proliferation of osteoprogenitor cells, without affecting their normal development and further sustaining the osteogenic differentiation of the cells. Our results are complementary to previous studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and orthodontic applications.


2021 ◽  
pp. 2111003
Author(s):  
Jiayi Mao ◽  
Lu Chen ◽  
Zhengwei Cai ◽  
Shutong Qian ◽  
Zhimo Liu ◽  
...  

2021 ◽  
Vol 947 (1) ◽  
pp. 012025
Author(s):  
Van-Tuan Nguyen ◽  
Ngoc Tram Nguyen Thi ◽  
Ha Nguyen Thi ◽  
Thanh-An Ngo

Abstract Recently, biomaterials have attracted widespread concern because of their compatibilities with live bodies. Among advanced biomaterials, zinc phosphate nanospheres particles are potential candidates for delivering drug and dental restorations. However, their fabrication methods are complicated and non-eco-friendly. In this study, we report the impact of surfactant supplements on the wet chemical preparation of zinc phosphate. Experimentally, Di-propylene glycol (DPG) and Trimethylolpropane (TMP) were added to the solution in the preparation step to compare the morphology of synthesized particles with the non-surfactant process. The morphology was examined by transmission electron microscopy. The addition of surfactants changed particle shape to spherical with a diameter of less than 200 nm. Moreover, the synthesized particles with DPG had a solid form, while those with TMP had a hollow structure (a diameter of 50-70 nm and shell thickness of 5-7 nm). Furthermore, X-ray diffraction, Fourier transforms infrared, and Thermogravimetric analyses analyzed properties of hollow particles.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2794
Author(s):  
Yubia De Anda-Flores ◽  
Elizabeth Carvajal-Millan ◽  
Jaime Lizardi-Mendoza ◽  
Agustin Rascon-Chu ◽  
Judith Tanori-Cordova ◽  
...  

This study aimed to investigate the effect of arabinoxylans (AX) partial de-esterification with feruloyl esterase on the polysaccharide conformational behavior, topographical features, and antioxidant activity. After enzyme treatment, the ferulic acid (FA) content in AX was reduced from 7.30 to 5.48 µg FA/mg polysaccharide, and the molecule registered a small reduction in radius of gyration (RG), hydrodynamic radius (Rh), characteristic ratio (C∞), and persistence length (q). A slight decrease in α and a small increase in K constants in the Mark–Houwink–Sakurada equation for partially de-esterified AX (FAX) suggested a reduction in molecule structural rigidity and a more expanded coil conformation, respectively, in relation to AX. Fourier transform infrared spectroscopy spectra of AX and FAX presented a pattern characteristic for this polysaccharide. Atomic force microscopy topographic analysis of FAX showed a more regular surface without larger hollows in relation to AX. The antioxidant activity of FAX, compared to AX, was reduced by 30 and 41% using both 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods, respectively. These results suggest that feruloyl esterase treatment of AX could offer a strategy to tailor AX chains conformation, morphological features, and antioxidant activity, impacting the development of advanced biomaterials for biomedical and pharmaceutical applications.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 916
Author(s):  
Andrea Ruffini ◽  
Monica Sandri ◽  
Massimiliano Dapporto ◽  
Elisabetta Campodoni ◽  
Anna Tampieri ◽  
...  

Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.


Author(s):  
Yiming Ma ◽  
Lei Gao ◽  
Yunqing Tian ◽  
Pengguang Chen ◽  
Jing Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document