scholarly journals Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells

2007 ◽  
Vol 28 (9) ◽  
pp. 1937-1945 ◽  
Author(s):  
G. D. Lu ◽  
H.-M. Shen ◽  
M. C.M. Chung ◽  
C. N. Ong
2008 ◽  
Vol 294 (3) ◽  
pp. H1317-H1325 ◽  
Author(s):  
Jasna Marinovic ◽  
Marko Ljubkovic ◽  
Anna Stadnicka ◽  
Zeljko J. Bosnjak ◽  
Martin Bienengraeber

From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcKATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcKATP channel closing can lead to cardiac protection. Also, the role of the sarcKATP channel in apoptotic cell death is unclear. In the present study, the effects of channel inhibition on apoptosis and the specific interaction between the sarcKATP channel and mitochondria were investigated. Apoptotic cell death of cultured HL-1 and neonatal cardiomyocytes following exposure to oxidative stress was significantly increased in the presence of sarcKATP channel inhibitor HMR-1098 as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and caspase-3,7 assays. This was paralleled by an increased release of cytochrome c from mitochondria to cytosol, suggesting activation of the mitochondrial death pathway. sarcKATP channel inhibition during stress had no effect on Bcl-2, Bad, and phospho-Bad, indicating that the increase in apoptosis cannot be attributed to these modulators of the apoptotic pathway. However, monitoring of mitochondrial Ca2+ with rhod-2 fluorescent indicator revealed that mitochondrial Ca2+ accumulation during stress is potentiated in the presence of HMR-1098. In conclusion, this study provides novel evidence that opening of sarcKATP channels, through a specific Ca2+-related interaction with mitochondria, plays an important role in preventing cardiomyocyte apoptosis and mitochondrial damage during stress.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1101-1111 ◽  
Author(s):  
Jyotika Rajawat ◽  
Tina Alex ◽  
Hina Mir ◽  
Ashlesha Kadam ◽  
Rasheedunnisa Begum

Apoptosis involves a cascade of caspase activation leading to the ordered dismantling of critical cell components. However, little is known about the dismantling process in non-apoptotic cell death where caspases are not involved. Dictyostelium discoideum is a good model system to study caspase-independent cell death where experimental accessibility of non-apoptotic cell death is easier and molecular redundancy is reduced compared with other animal models. Poly(ADP-ribose) polymerase (PARP) is one of the key players in cell death. We have previously reported the role of PARP in development and the oxidative stress-induced cell death of D. discoideum. D. discoideum possesses nine PARP genes and does not have a caspase gene, and thus it provides a better model system to dissect the role of PARP in caspase-independent cell death. The current study shows that non-apoptotic cell death in D. discoideum occurs in a programmed fashion where proteases cause mitochondrial membrane potential changes followed by plasma membrane rupture and early loss of plasma membrane integrity. Furthermore, the results suggest that calpains and cathepsin D, which are instrumental in dismantling the cell, act downstream of PARP. Thus, PARP, apoptosis inducing factor, calpains and cathepsin D are the key players in D. discoideum caspase-independent cell death, acting in a sequential manner.


Sign in / Sign up

Export Citation Format

Share Document