scholarly journals Encoding-Stage Crosstalk Between Object- and Spatial Property-Based Scene Processing Pathways

2014 ◽  
Vol 25 (8) ◽  
pp. 2267-2281 ◽  
Author(s):  
Drew Linsley ◽  
Sean P. MacEvoy
2011 ◽  
Vol 31 (31) ◽  
pp. 11305-11312 ◽  
Author(s):  
D. D. Dilks ◽  
J. B. Julian ◽  
J. Kubilius ◽  
E. S. Spelke ◽  
N. Kanwisher

2017 ◽  
Vol 131 (4) ◽  
pp. 337-347 ◽  
Author(s):  
Gesa Feenders ◽  
Yoko Kato ◽  
Katharina M. Borzeszkowski ◽  
Georg M. Klump

Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 97-108 ◽  
Author(s):  
K F Dobinson ◽  
M Henderson ◽  
R L Kelley ◽  
R A Collins ◽  
A M Lambowitz

Abstract The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.


1997 ◽  
Vol 54 (2) ◽  
pp. 91-103 ◽  
Author(s):  
Antonella Maffei ◽  
Kyriakos Papadopoulos ◽  
Paul E Harris

2006 ◽  
Vol 312 (20) ◽  
pp. 4150-4161 ◽  
Author(s):  
Timothy D. Houle ◽  
Michal L. Ram ◽  
Walter J. McMurray ◽  
Steven E. Cala

1997 ◽  
Author(s):  
Daniel Boggiano ◽  
Peter R. De Forest ◽  
Francis X. Sheehan
Keyword(s):  

2017 ◽  
Vol 14 (6) ◽  
pp. 1457-1460 ◽  
Author(s):  
Jason Beringer ◽  
Ian McHugh ◽  
Lindsay B. Hutley ◽  
Peter Isaac ◽  
Natascha Kljun

Abstract. Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.


Sign in / Sign up

Export Citation Format

Share Document