gross primary productivity
Recently Published Documents


TOTAL DOCUMENTS

353
(FIVE YEARS 142)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Vol 312 ◽  
pp. 108708
Author(s):  
Shanning Bao ◽  
Thomas Wutzler ◽  
Sujan Koirala ◽  
Matthias Cuntz ◽  
Andreas Ibrom ◽  
...  

2021 ◽  
Vol 18 (24) ◽  
pp. 6579-6588
Author(s):  
Alexander J. Turner ◽  
Philipp Köhler ◽  
Troy S. Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Abstract. Solar-induced chlorophyll fluorescence (SIF) has previously been shown to strongly correlate with gross primary productivity (GPP); however this relationship has not yet been quantified for the recently launched TROPOspheric Monitoring Instrument (TROPOMI). Here we use a Gaussian mixture model to develop a parsimonious relationship between SIF from TROPOMI and GPP from flux towers across the conterminous United States (CONUS). The mixture model indicates the SIF–GPP relationship can be characterized by a linear model with two terms. We then estimate GPP across CONUS at 500 m spatial resolution over a 16 d moving window. We observe four extreme precipitation events that induce regional GPP anomalies: drought in western Texas, flooding in the midwestern US, drought in South Dakota, and drought in California. Taken together, these events account for 28 % of the year-to-year GPP differences across CONUS. Despite these large regional anomalies, we find that CONUS GPP varies by less than 4 % between 2018 and 2019.


2021 ◽  
Vol 13 (21) ◽  
pp. 11744
Author(s):  
Chi Zhang ◽  
Shaohong Wu ◽  
Yu Deng ◽  
Jieming Chou

Three Earth system models (ESMs) from the Coupled Model Intercomparison Project phase 6 (CMIP6) were chosen to project ecosystem changes under 1.5 and 2 °C global warming targets in the Shared Socioeconomic Pathway 4.5 W m−2 (SSP245) scenario. Annual terrestrial gross primary productivity (GPP) was taken as the representative ecological indicator of the ecosystem. Under 1.5 °C global warming, GPP in four climate zones—i.e., temperate continental; temperate monsoonal; subtropical–tropical monsoonal; high-cold Tibetan Plateau—showed a marked increase, the smallest magnitude of which was around 12.3%. The increase was greater under 2 °C of global warming, which suggests that from the perspective of ecosystem productivity, global warming poses no ecological risk in China. Specifically, in comparison with historical GPP (1986–2005), under 1.5 °C global warming GPP was projected to increase by 16.1–23.8% in the temperate continental zone, 12.3–16.1% in the temperate monsoonal zone, 12.5–14.7% in the subtropical–tropical monsoonal zone, and 20.0–37.0% on the Tibetan Plateau. Under 2 °C global warming, the projected GPP increase was 23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal zone, 16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the Tibetan Plateau. The GPP increase contributed by climate change was further quantified and attributed. The ESM prediction from the Max Planck Institute suggested that the climate contribution could range from −12.8% in the temperate continental zone up to 61.1% on the Tibetan Plateau; however, the ESMs differed markedly regarding their climate contribution to GPP change. Although precipitation has a higher sensitivity coefficient, temperature generally plays a more important role in GPP change, primarily because of the larger relative change in temperature in comparison with that of precipitation.


2021 ◽  
Vol 13 (21) ◽  
pp. 4229
Author(s):  
Zexia Duan ◽  
Yuanjian Yang ◽  
Shaohui Zhou ◽  
Zhiqiu Gao ◽  
Lian Zong ◽  
...  

Despite advances in remote sensing–based gross primary productivity (GPP) modeling, the calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product (GPPMOD) is less well understood over rice–wheat-rotation cropland. To improve the performance of GPPMOD, a random forest (RF) machine learning model was constructed and employed over the rice–wheat double-cropping fields of eastern China. The RF-derived GPP (GPPRF) agreed well with the eddy covariance (EC)-derived GPP (GPPEC), with a coefficient of determination of 0.99 and a root-mean-square error of 0.42 g C m−2 d−1. Therefore, it was deemed reliable to upscale GPPEC to regional scales through the RF model. The upscaled cumulative seasonal GPPRF was higher for rice (924 g C m−2) than that for wheat (532 g C m−2). By comparing GPPMOD and GPPEC, we found that GPPMOD performed well during the crop rotation periods but underestimated GPP during the rice/wheat active growth seasons. Furthermore, GPPMOD was calibrated by GPPRF, and the error range of GPP MOD (GPPRF minus GPPMOD) was found to be 2.5–3.25 g C m−2 d−1 for rice and 0.75–1.25 g C m−2 d−1 for wheat. Our findings suggest that RF-based GPP products have the potential to be applied in accurately evaluating MODIS-based agroecosystem carbon cycles at regional or even global scales.


Sign in / Sign up

Export Citation Format

Share Document