scholarly journals Stability-Indicating Method and LC–MS-MS Characterization of Forced Degradation Products of Sofosbuvir

2016 ◽  
Vol 54 (9) ◽  
pp. 1631-1640 ◽  
Author(s):  
M. Nebsen ◽  
Eman S. Elzanfaly
2018 ◽  
Vol 3 (4) ◽  
pp. 207-218 ◽  
Author(s):  
Mouloud Yessaad ◽  
Lise Bernard ◽  
Daniel Bourdeaux ◽  
Philip Chennell ◽  
Valérie Sautou

Abstract Background Water-soluble vitamins are often included simultaneously in pharmaceutical formulations as food complements or in parenteral nutrition mixtures. Given their sensitivity to heat, light or pH variations, it is important to study their stability using validated stability indicating methods. We thus aimed to validate a liquid chromatography (LC) stability-indicating method for the simultaneous quantification of 5 water-soluble vitamins. Methods We analyzed four water-soluble B vitamins (nicotinamide, pyridoxine, folic acid, cyanocobalamin) and ascorbic acid using a LC method with diode array detector. They were separated on a C18 stationary phase under gradient elution of solvent A [0.2 % of metaphosphoric acid in water and acetonitrile 98:2] and solvent B (100 % acetonitrile). All vitamins were subjected to forced degradation conditions and we showed that the obtained degradation products didn’t interfere with the vitamins. Results The method allows the separation of the 5 water-soluble vitamins in a 30 minute run without any interference from the breakdown products obtained with acid/alkaline solutions, hydrogen peroxide, temperature and light. It meets all the qualitative and quantitative criteria for validation with an acceptable accuracy and good linearity. Conclusions This stability-indicating method can be used for carrying out stability studies of water-soluble vitamins in pharmaceutical preparations.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (01) ◽  
pp. 20-27
Author(s):  
Sandeep S. Sonawane ◽  
◽  
Akshay S. Patil ◽  
Santosh S. Chhajed ◽  
Dimple S. Lalchandani ◽  
...  

A simple, accurate, reproducible and specific stability-indicating RP-HPLC method was developed for estimation of ethionamide in tablets. Ethionamide was exposed to acid, alkali and neutral hydrolysis at elevated temperatures, to thermolytic degradation, peroxide-mediated oxidation at room temperature in dark and to photolytic degradation. The drug was found stable to thermolytic and photolytic conditions and to neutral hydrolysis. However, substantial degradation was obtained in acid and alkali hydrolysis and complete degradation in peroxide-medicated oxidation. Similar degradation behavior was observed when ethionamide tablets were exposed to the mentioned forced degradation conditions. The method showed adequate resolution of drug from its potential degradation products on C18 (250 × 4.6 mm, 5µ) column using mobile phase of methanol: water (50: 50 % V/V) at 1 mL/min. The drug and its potential degradation products were detected at 290 nm. The method was validated as per the ICH Q2(R1) guidelines. The enrichment of the alkali degradation product was performed and isolated by preparative TLC and further confirmed by NMR and IR spectroscopy.


2020 ◽  
Vol 4 (1) ◽  
pp. 28-38
Author(s):  
Simony Martiny ◽  
Mairique Waszczuk ◽  
Samuel Kaiser ◽  
Marina Cardoso Nemitz ◽  
Valquiria Linck Bassani

The purpose of this study was to develop and validate a fast HPLC stability-indicating method for simultaneously quantifying the four main isoflavones in Trifolium pratense. Validation procedures followed the ICH requirements for complex matrices. The stability-indicating tests were performed by exposing the isoflavones to conditions of forced degradation and further analysis for verifying the formation of degradation products and their possible interferences in the HPLC analysis. The major isoflavones of Trifolium pratense proved to be stable against acid and oxidative media, thermodegradation, and photodegradation. However, they proved to be unstable in alkaline media, even for short periods of exposure like 2h. In this condition, in addition to the peaks corresponding to isoflavones, the HPLC analysis showed the presence of three additional peaks which were eluted at different retention times to the reference substances, without interfering in the quantification of the four analytes of interest, formononetin, biochanin A, daidzein and genistein. The method was validated following ICH guidelines showing to be specific, linear, precise, accurate, and robust.This first report concerning a stability-indicating method revealed that the proposed HPLC method reliably quantify the isoflavones and separate them from the degradation products in a short time of analysis.


Sign in / Sign up

Export Citation Format

Share Document