Motif profile dynamics and transient species in a Boolean model of mutualistic ecological communities

2015 ◽  
Vol 4 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Colin Campbell ◽  
Katriona Shea ◽  
Suann Yang ◽  
Réka Albert

2018 ◽  
Author(s):  
Molly F Jenkins ◽  
Ethan P White ◽  
Allen H Hurlbert

Ecological communities are composed of a combination of core species that maintain local viable populations and transient species that occur infrequently due to dispersal from surrounding regions. Preliminary work indicates that while core and transient species are both commonly observed in community surveys of a wide range of taxonomic groups, their relative prevalence varies substantially from one community to another depending upon the spatial scale at which the community was characterized and its environmental context. We used a geographically extensive dataset of 968 bird community time series to quantitatively describe how the proportion of core species in a community varies with spatial scale and environmental heterogeneity. We found that the proportion of core species in an assemblage increased with spatial scale in a positive decelerating fashion with a concomitant decrease in the proportion of transient species. Variation in the shape of this scaling relationship between sites was related to regional environmental heterogeneity, with lower proportions of core species at a given scale associated with high environmental heterogeneity. This influence of scale and environmental heterogeneity on the proportion of core species may help resolve discrepancies between studies of biotic interactions, resource availability, and mass effects conducted at different scales, because the importance of these and other ecological processes are expected to differ substantially between core and transient species.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6019 ◽  
Author(s):  
Molly F. Jenkins ◽  
Ethan P. White ◽  
Allen H. Hurlbert

Ecological communities are composed of a combination of core species that maintain local viable populations and transient species that occur infrequently due to dispersal from surrounding regions. Preliminary work indicates that while core and transient species are both commonly observed in community surveys of a wide range of taxonomic groups, their relative prevalence varies substantially from one community to another depending upon the spatial scale at which the community was characterized and its environmental context. We used a geographically extensive dataset of 968 bird community time series to quantitatively describe how the proportion of core species in a community varies with spatial scale and environmental heterogeneity. We found that the proportion of core species in an assemblage increased with spatial scale in a positive decelerating fashion with a concomitant decrease in the proportion of transient species. Variation in the shape of this scaling relationship between sites was related to regional environmental heterogeneity, with lower proportions of core species at a given scale associated with high environmental heterogeneity. Understanding this influence of scale and environmental heterogeneity on the proportion of core species may help resolve discrepancies between studies of biotic interactions, resource availability, and mass effects conducted at different scales, because the importance of these and other ecological processes are expected to differ substantially between core and transient species.



Ecology ◽  
2018 ◽  
Vol 99 (8) ◽  
pp. 1825-1835 ◽  
Author(s):  
Sara J. Snell Taylor ◽  
Brian S. Evans ◽  
Ethan P. White ◽  
Allen H. Hurlbert


2017 ◽  
Author(s):  
Sara Snell ◽  
Brian S. Evans ◽  
Ethan P. White ◽  
Allen H. Hurlbert

AbstractTransient species occur infrequently in a community over time and do not maintain viable local populations. Because transient species interact differently than non-transients with their biotic and abiotic environment, it is important to characterize the prevalence of these species and how they impact our understanding of ecological systems. We quantified the prevalence and impact of transient species in communities using data on over 17,000 community time series spanning an array of ecosystems, taxonomic groups, and spatial scales. We found that transient species are a general feature of communities regardless of taxa or ecosystem. The proportion of these species decreases with spatial scale leading to a need to control for scale in comparative work. Removing transient species from analyses influences the form of a suite of commonly studied ecological patterns including species-abundance distributions, species-energy relationships, species-area relationships, and temporal turnover. Careful consideration should be given to whether transient species are included in analyses depending on the theoretical and practical relevance of these species for the question being studied.



2018 ◽  
Author(s):  
Molly F Jenkins ◽  
Ethan P White ◽  
Allen H Hurlbert

Ecological communities are composed of a combination of core species that maintain local viable populations and transient species that occur infrequently due to dispersal from surrounding regions. Preliminary work indicates that while core and transient species are both commonly observed in community surveys of a wide range of taxonomic groups, their relative prevalence varies substantially from one community to another depending upon the spatial scale at which the community was characterized and its environmental context. We used a geographically extensive dataset of 968 bird community time series to quantitatively describe how the proportion of core species in a community varies with spatial scale and environmental heterogeneity. We found that the proportion of core species in an assemblage increased with spatial scale in a positive decelerating fashion with a concomitant decrease in the proportion of transient species. Variation in the shape of this scaling relationship between sites was related to regional environmental heterogeneity, with lower proportions of core species at a given scale associated with high environmental heterogeneity. This influence of scale and environmental heterogeneity on the proportion of core species may help resolve discrepancies between studies of biotic interactions, resource availability, and mass effects conducted at different scales, because the importance of these and other ecological processes are expected to differ substantially between core and transient species.





Author(s):  
Melanie J. Hatcher ◽  
Alison M. Dunn


2020 ◽  
Vol 650 ◽  
pp. 269-287
Author(s):  
WC Thaxton ◽  
JC Taylor ◽  
RG Asch

As the effects of climate change become more pronounced, variation in the direction and magnitude of shifts in species occurrence in space and time may disrupt interspecific interactions in ecological communities. In this study, we examined how the fall and winter ichthyoplankton community in the Newport River Estuary located inshore of Pamlico Sound in the southeastern United States has responded to environmental variability over the last 27 yr. We relate the timing of estuarine ingress of 10 larval fish species to changes in sea surface temperature (SST), the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, wind strength and phenology, and tidal height. We also examined whether any species exhibited trends in ingress phenology over the last 3 decades. Species varied in the magnitude of their responses to all of the environmental variables studied, but most shared a common direction of change. SST and northerly wind strength had the largest impact on estuarine ingress phenology, with most species ingressing earlier during warm years and delaying ingress during years with strong northerly winds. As SST warms in the coming decades, the average date of ingress of some species (Atlantic croaker Micropogonias undulatus, summer flounder Paralichthys dentatus, pinfish Lagodon rhomboides) is projected to advance on the order of weeks to months, assuming temperatures do not exceed a threshold at which species can no longer respond through changes in phenology. These shifts in ingress could affect larval survival and growth since environmental conditions in the estuarine and pelagic nursery habitats of fishes also vary seasonally.



Sign in / Sign up

Export Citation Format

Share Document